Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters

The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2018-09, Vol.25 (9), p.766-777
Hauptverfasser: Jansz, Natasha, Keniry, Andrew, Trussart, Marie, Bildsoe, Heidi, Beck, Tamara, Tonks, Ian D., Mould, Arne W., Hickey, Peter, Breslin, Kelsey, Iminitoff, Megan, Ritchie, Matthew E., McGlinn, Edwina, Kay, Graham F., Murphy, James M., Blewitt, Marnie E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 777
container_issue 9
container_start_page 766
container_title Nature structural & molecular biology
container_volume 25
creator Jansz, Natasha
Keniry, Andrew
Trussart, Marie
Bildsoe, Heidi
Beck, Tamara
Tonks, Ian D.
Mould, Arne W.
Hickey, Peter
Breslin, Kelsey
Iminitoff, Megan
Ritchie, Matthew E.
McGlinn, Edwina
Kay, Graham F.
Murphy, James M.
Blewitt, Marnie E.
description The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins. In situ Hi-C and other genome-wide and imaging analyses in different mouse embryonic cell types reveal that the noncanonical SMC protein Smchd1 regulates long-range chromatin interactions and the developmental silencing of Hox genes.
doi_str_mv 10.1038/s41594-018-0111-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091238853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382159</galeid><sourcerecordid>A593382159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-96e00e1249d0f122b20710138664779d53452e91187349b6da0c5fdd57ac512f3</originalsourceid><addsrcrecordid>eNp1ktFqFTEQhhdRbK0-gDcS8EYvtmaSzSa5LEVtoSBYBe9CTnZ2z5bdpCbZUvv05rC15YgSQsLk-4fMzF9Vr4EeA-XqQ2pA6KamoMoGqO-eVIcgGlFrrcTTh7vmB9WLlK4oZUJI_rw64BSY5EIeVu5ydtsOSMRhmWzGRKbghzpaPyBx2xhmm0dPRp8xWpfH4BMJnuQtltgucIPkxwqGFGYk1nfEZnIWbombllRk6WX1rLdTwlf351H1_dPHb6dn9cWXz-enJxe1E1znWrdIKQJrdEd7YGzDqAQKXLVtI6XuBG8EQw2gJG_0pu0sdaLvOiGtE8B6flS9W_Nex_BzwZTNPCaH02Q9hiUZRjUwrpTgBX37F3oVlujL7wwDpbQUqpWP1GAnNKPvQy5N2CU1J0Jzrljpf6GO_0GV1eE8uuCxH0t8T_B-T1CYjLd5sEtK5vzy6z4LK-tiSClib67jONv4ywA1OxOY1QSmmMDsTGDuiubNfXHLZsbuQfFn6gVgK5DKUxl0fKz-_1l_A96QuVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188975867</pqid></control><display><type>article</type><title>Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jansz, Natasha ; Keniry, Andrew ; Trussart, Marie ; Bildsoe, Heidi ; Beck, Tamara ; Tonks, Ian D. ; Mould, Arne W. ; Hickey, Peter ; Breslin, Kelsey ; Iminitoff, Megan ; Ritchie, Matthew E. ; McGlinn, Edwina ; Kay, Graham F. ; Murphy, James M. ; Blewitt, Marnie E.</creator><creatorcontrib>Jansz, Natasha ; Keniry, Andrew ; Trussart, Marie ; Bildsoe, Heidi ; Beck, Tamara ; Tonks, Ian D. ; Mould, Arne W. ; Hickey, Peter ; Breslin, Kelsey ; Iminitoff, Megan ; Ritchie, Matthew E. ; McGlinn, Edwina ; Kay, Graham F. ; Murphy, James M. ; Blewitt, Marnie E.</creatorcontrib><description>The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins. In situ Hi-C and other genome-wide and imaging analyses in different mouse embryonic cell types reveal that the noncanonical SMC protein Smchd1 regulates long-range chromatin interactions and the developmental silencing of Hox genes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-018-0111-z</identifier><identifier>PMID: 30127357</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/63 ; 38/39 ; 38/91 ; 45 ; 631/208/177 ; 631/337/100/101 ; 631/337/176/1433 ; 631/337/176/2016 ; Ablation ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chromatin ; Chromosomes ; DNA sequencing ; Domains ; Epigenetic inheritance ; Gene expression ; Gene regulation ; Genes ; Genetic regulation ; Genomes ; Genomics ; Histone H3 ; Image processing equipment ; Life Sciences ; Membrane Biology ; Novels ; Protein Structure ; Proteins ; Transcription ; X chromosome ; X chromosomes</subject><ispartof>Nature structural &amp; molecular biology, 2018-09, Vol.25 (9), p.766-777</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-96e00e1249d0f122b20710138664779d53452e91187349b6da0c5fdd57ac512f3</citedby><cites>FETCH-LOGICAL-c539t-96e00e1249d0f122b20710138664779d53452e91187349b6da0c5fdd57ac512f3</cites><orcidid>0000-0003-0195-3949 ; 0000-0002-8153-6258 ; 0000-0002-3319-8493 ; 0000-0002-1829-986X ; 0000-0002-2004-4348 ; 0000-0002-2984-1474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-018-0111-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-018-0111-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30127357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansz, Natasha</creatorcontrib><creatorcontrib>Keniry, Andrew</creatorcontrib><creatorcontrib>Trussart, Marie</creatorcontrib><creatorcontrib>Bildsoe, Heidi</creatorcontrib><creatorcontrib>Beck, Tamara</creatorcontrib><creatorcontrib>Tonks, Ian D.</creatorcontrib><creatorcontrib>Mould, Arne W.</creatorcontrib><creatorcontrib>Hickey, Peter</creatorcontrib><creatorcontrib>Breslin, Kelsey</creatorcontrib><creatorcontrib>Iminitoff, Megan</creatorcontrib><creatorcontrib>Ritchie, Matthew E.</creatorcontrib><creatorcontrib>McGlinn, Edwina</creatorcontrib><creatorcontrib>Kay, Graham F.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Blewitt, Marnie E.</creatorcontrib><title>Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins. In situ Hi-C and other genome-wide and imaging analyses in different mouse embryonic cell types reveal that the noncanonical SMC protein Smchd1 regulates long-range chromatin interactions and the developmental silencing of Hox genes.</description><subject>14/63</subject><subject>38/39</subject><subject>38/91</subject><subject>45</subject><subject>631/208/177</subject><subject>631/337/100/101</subject><subject>631/337/176/1433</subject><subject>631/337/176/2016</subject><subject>Ablation</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>DNA sequencing</subject><subject>Domains</subject><subject>Epigenetic inheritance</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic regulation</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histone H3</subject><subject>Image processing equipment</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Novels</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Transcription</subject><subject>X chromosome</subject><subject>X chromosomes</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ktFqFTEQhhdRbK0-gDcS8EYvtmaSzSa5LEVtoSBYBe9CTnZ2z5bdpCbZUvv05rC15YgSQsLk-4fMzF9Vr4EeA-XqQ2pA6KamoMoGqO-eVIcgGlFrrcTTh7vmB9WLlK4oZUJI_rw64BSY5EIeVu5ydtsOSMRhmWzGRKbghzpaPyBx2xhmm0dPRp8xWpfH4BMJnuQtltgucIPkxwqGFGYk1nfEZnIWbombllRk6WX1rLdTwlf351H1_dPHb6dn9cWXz-enJxe1E1znWrdIKQJrdEd7YGzDqAQKXLVtI6XuBG8EQw2gJG_0pu0sdaLvOiGtE8B6flS9W_Nex_BzwZTNPCaH02Q9hiUZRjUwrpTgBX37F3oVlujL7wwDpbQUqpWP1GAnNKPvQy5N2CU1J0Jzrljpf6GO_0GV1eE8uuCxH0t8T_B-T1CYjLd5sEtK5vzy6z4LK-tiSClib67jONv4ywA1OxOY1QSmmMDsTGDuiubNfXHLZsbuQfFn6gVgK5DKUxl0fKz-_1l_A96QuVI</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Jansz, Natasha</creator><creator>Keniry, Andrew</creator><creator>Trussart, Marie</creator><creator>Bildsoe, Heidi</creator><creator>Beck, Tamara</creator><creator>Tonks, Ian D.</creator><creator>Mould, Arne W.</creator><creator>Hickey, Peter</creator><creator>Breslin, Kelsey</creator><creator>Iminitoff, Megan</creator><creator>Ritchie, Matthew E.</creator><creator>McGlinn, Edwina</creator><creator>Kay, Graham F.</creator><creator>Murphy, James M.</creator><creator>Blewitt, Marnie E.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-8153-6258</orcidid><orcidid>https://orcid.org/0000-0002-3319-8493</orcidid><orcidid>https://orcid.org/0000-0002-1829-986X</orcidid><orcidid>https://orcid.org/0000-0002-2004-4348</orcidid><orcidid>https://orcid.org/0000-0002-2984-1474</orcidid></search><sort><creationdate>20180901</creationdate><title>Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters</title><author>Jansz, Natasha ; Keniry, Andrew ; Trussart, Marie ; Bildsoe, Heidi ; Beck, Tamara ; Tonks, Ian D. ; Mould, Arne W. ; Hickey, Peter ; Breslin, Kelsey ; Iminitoff, Megan ; Ritchie, Matthew E. ; McGlinn, Edwina ; Kay, Graham F. ; Murphy, James M. ; Blewitt, Marnie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-96e00e1249d0f122b20710138664779d53452e91187349b6da0c5fdd57ac512f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14/63</topic><topic>38/39</topic><topic>38/91</topic><topic>45</topic><topic>631/208/177</topic><topic>631/337/100/101</topic><topic>631/337/176/1433</topic><topic>631/337/176/2016</topic><topic>Ablation</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>DNA sequencing</topic><topic>Domains</topic><topic>Epigenetic inheritance</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic regulation</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histone H3</topic><topic>Image processing equipment</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Novels</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Transcription</topic><topic>X chromosome</topic><topic>X chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansz, Natasha</creatorcontrib><creatorcontrib>Keniry, Andrew</creatorcontrib><creatorcontrib>Trussart, Marie</creatorcontrib><creatorcontrib>Bildsoe, Heidi</creatorcontrib><creatorcontrib>Beck, Tamara</creatorcontrib><creatorcontrib>Tonks, Ian D.</creatorcontrib><creatorcontrib>Mould, Arne W.</creatorcontrib><creatorcontrib>Hickey, Peter</creatorcontrib><creatorcontrib>Breslin, Kelsey</creatorcontrib><creatorcontrib>Iminitoff, Megan</creatorcontrib><creatorcontrib>Ritchie, Matthew E.</creatorcontrib><creatorcontrib>McGlinn, Edwina</creatorcontrib><creatorcontrib>Kay, Graham F.</creatorcontrib><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Blewitt, Marnie E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansz, Natasha</au><au>Keniry, Andrew</au><au>Trussart, Marie</au><au>Bildsoe, Heidi</au><au>Beck, Tamara</au><au>Tonks, Ian D.</au><au>Mould, Arne W.</au><au>Hickey, Peter</au><au>Breslin, Kelsey</au><au>Iminitoff, Megan</au><au>Ritchie, Matthew E.</au><au>McGlinn, Edwina</au><au>Kay, Graham F.</au><au>Murphy, James M.</au><au>Blewitt, Marnie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>25</volume><issue>9</issue><spage>766</spage><epage>777</epage><pages>766-777</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins. In situ Hi-C and other genome-wide and imaging analyses in different mouse embryonic cell types reveal that the noncanonical SMC protein Smchd1 regulates long-range chromatin interactions and the developmental silencing of Hox genes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30127357</pmid><doi>10.1038/s41594-018-0111-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0195-3949</orcidid><orcidid>https://orcid.org/0000-0002-8153-6258</orcidid><orcidid>https://orcid.org/0000-0002-3319-8493</orcidid><orcidid>https://orcid.org/0000-0002-1829-986X</orcidid><orcidid>https://orcid.org/0000-0002-2004-4348</orcidid><orcidid>https://orcid.org/0000-0002-2984-1474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2018-09, Vol.25 (9), p.766-777
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2091238853
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 14/63
38/39
38/91
45
631/208/177
631/337/100/101
631/337/176/1433
631/337/176/2016
Ablation
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chromatin
Chromosomes
DNA sequencing
Domains
Epigenetic inheritance
Gene expression
Gene regulation
Genes
Genetic regulation
Genomes
Genomics
Histone H3
Image processing equipment
Life Sciences
Membrane Biology
Novels
Protein Structure
Proteins
Transcription
X chromosome
X chromosomes
title Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smchd1%20regulates%20long-range%20chromatin%20interactions%20on%20the%20inactive%20X%20chromosome%20and%20at%20Hox%20clusters&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Jansz,%20Natasha&rft.date=2018-09-01&rft.volume=25&rft.issue=9&rft.spage=766&rft.epage=777&rft.pages=766-777&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-018-0111-z&rft_dat=%3Cgale_proqu%3EA593382159%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188975867&rft_id=info:pmid/30127357&rft_galeid=A593382159&rfr_iscdi=true