Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy

The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2018-09, Vol.122 (37), p.7427-7436
Hauptverfasser: Bell, Matthew R, Cruzeiro, Vinícius Wilian D, Cismesia, Adam P, Tesler, Larry F, Roitberg, Adrian E, Polfer, Nicolas C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7436
container_issue 37
container_start_page 7427
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 122
creator Bell, Matthew R
Cruzeiro, Vinícius Wilian D
Cismesia, Adam P
Tesler, Larry F
Roitberg, Adrian E
Polfer, Nicolas C
description The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source. The complexes are then cooled in the cryogenic trap prior to spectroscopic measurements. These molecules provide two putative sites for solvent attachment: the protonated amine (NH3 +) and the OH groups. Comparisons of the experimental IR spectra to theoretical spectra obtained with density functional theory show that the NH3 + site is mainly favored. Evidence for the formation of both NH3-bound and OH-bound conformers is found only in tyramine, despite having similar solution- and gas-phase energetics to that of PABA. Since the structures cannot interconvert in the gas phase, this suggests an isomerization during the electrospray process.
doi_str_mv 10.1021/acs.jpca.8b05896
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091238643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091238643</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-aa6995483992ee8689631ee8d256bff8bf42c38887edbc7fbc0320ebda0b6c123</originalsourceid><addsrcrecordid>eNp1kb1OwzAUhS0EolDYmZBHBlL8k7jOiKoWKiGBVJgj23HAKLWD7SDKI_DUuKSwMflI_s7RvfcAcIbRBCOCr4QKk9dOiQmXqOAl2wNHuCAoKwgu9pNGvMwKRssROA7hFSGEKckPwYgiTBiZsiPw9eCdNPYZxhcNV9H3KvZeB-gauHLtu7Yxm7l11-oPXcOlswEunF8nbSyct1pF70LnxWb7Zz5FNM7Cp7ANnPmNe9bWKLi0jRc-eR5eXHS1CcEpM6CrbohQrtucgINGtEGf7t4xeFrMH2e32d39zXJ2fZeJHJGYCcHKssg5LUuiNWdpbYqTqEnBZNNw2eREUc75VNdSTRupECVIy1ogyRQmdAwuhtzOu7deh1itTVC6bYXVrg8VQWWiOMtpQtGAqjRj8LqpOm_Wwm8qjKptA1VqoNo2UO0aSJbzXXov053-DL8nT8DlAPxYXe9tWvb_vG-EOpYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091238643</pqid></control><display><type>article</type><title>Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy</title><source>ACS Publications</source><creator>Bell, Matthew R ; Cruzeiro, Vinícius Wilian D ; Cismesia, Adam P ; Tesler, Larry F ; Roitberg, Adrian E ; Polfer, Nicolas C</creator><creatorcontrib>Bell, Matthew R ; Cruzeiro, Vinícius Wilian D ; Cismesia, Adam P ; Tesler, Larry F ; Roitberg, Adrian E ; Polfer, Nicolas C</creatorcontrib><description>The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source. The complexes are then cooled in the cryogenic trap prior to spectroscopic measurements. These molecules provide two putative sites for solvent attachment: the protonated amine (NH3 +) and the OH groups. Comparisons of the experimental IR spectra to theoretical spectra obtained with density functional theory show that the NH3 + site is mainly favored. Evidence for the formation of both NH3-bound and OH-bound conformers is found only in tyramine, despite having similar solution- and gas-phase energetics to that of PABA. Since the structures cannot interconvert in the gas phase, this suggests an isomerization during the electrospray process.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.8b05896</identifier><identifier>PMID: 30126276</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2018-09, Vol.122 (37), p.7427-7436</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-aa6995483992ee8689631ee8d256bff8bf42c38887edbc7fbc0320ebda0b6c123</citedby><cites>FETCH-LOGICAL-a402t-aa6995483992ee8689631ee8d256bff8bf42c38887edbc7fbc0320ebda0b6c123</cites><orcidid>0000-0002-4739-5447 ; 0000-0003-3963-8784 ; 0000-0002-5892-8667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.8b05896$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.8b05896$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30126276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bell, Matthew R</creatorcontrib><creatorcontrib>Cruzeiro, Vinícius Wilian D</creatorcontrib><creatorcontrib>Cismesia, Adam P</creatorcontrib><creatorcontrib>Tesler, Larry F</creatorcontrib><creatorcontrib>Roitberg, Adrian E</creatorcontrib><creatorcontrib>Polfer, Nicolas C</creatorcontrib><title>Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source. The complexes are then cooled in the cryogenic trap prior to spectroscopic measurements. These molecules provide two putative sites for solvent attachment: the protonated amine (NH3 +) and the OH groups. Comparisons of the experimental IR spectra to theoretical spectra obtained with density functional theory show that the NH3 + site is mainly favored. Evidence for the formation of both NH3-bound and OH-bound conformers is found only in tyramine, despite having similar solution- and gas-phase energetics to that of PABA. Since the structures cannot interconvert in the gas phase, this suggests an isomerization during the electrospray process.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kb1OwzAUhS0EolDYmZBHBlL8k7jOiKoWKiGBVJgj23HAKLWD7SDKI_DUuKSwMflI_s7RvfcAcIbRBCOCr4QKk9dOiQmXqOAl2wNHuCAoKwgu9pNGvMwKRssROA7hFSGEKckPwYgiTBiZsiPw9eCdNPYZxhcNV9H3KvZeB-gauHLtu7Yxm7l11-oPXcOlswEunF8nbSyct1pF70LnxWb7Zz5FNM7Cp7ANnPmNe9bWKLi0jRc-eR5eXHS1CcEpM6CrbohQrtucgINGtEGf7t4xeFrMH2e32d39zXJ2fZeJHJGYCcHKssg5LUuiNWdpbYqTqEnBZNNw2eREUc75VNdSTRupECVIy1ogyRQmdAwuhtzOu7deh1itTVC6bYXVrg8VQWWiOMtpQtGAqjRj8LqpOm_Wwm8qjKptA1VqoNo2UO0aSJbzXXov053-DL8nT8DlAPxYXe9tWvb_vG-EOpYU</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Bell, Matthew R</creator><creator>Cruzeiro, Vinícius Wilian D</creator><creator>Cismesia, Adam P</creator><creator>Tesler, Larry F</creator><creator>Roitberg, Adrian E</creator><creator>Polfer, Nicolas C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4739-5447</orcidid><orcidid>https://orcid.org/0000-0003-3963-8784</orcidid><orcidid>https://orcid.org/0000-0002-5892-8667</orcidid></search><sort><creationdate>20180920</creationdate><title>Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy</title><author>Bell, Matthew R ; Cruzeiro, Vinícius Wilian D ; Cismesia, Adam P ; Tesler, Larry F ; Roitberg, Adrian E ; Polfer, Nicolas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-aa6995483992ee8689631ee8d256bff8bf42c38887edbc7fbc0320ebda0b6c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bell, Matthew R</creatorcontrib><creatorcontrib>Cruzeiro, Vinícius Wilian D</creatorcontrib><creatorcontrib>Cismesia, Adam P</creatorcontrib><creatorcontrib>Tesler, Larry F</creatorcontrib><creatorcontrib>Roitberg, Adrian E</creatorcontrib><creatorcontrib>Polfer, Nicolas C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bell, Matthew R</au><au>Cruzeiro, Vinícius Wilian D</au><au>Cismesia, Adam P</au><au>Tesler, Larry F</au><au>Roitberg, Adrian E</au><au>Polfer, Nicolas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2018-09-20</date><risdate>2018</risdate><volume>122</volume><issue>37</issue><spage>7427</spage><epage>7436</epage><pages>7427-7436</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source. The complexes are then cooled in the cryogenic trap prior to spectroscopic measurements. These molecules provide two putative sites for solvent attachment: the protonated amine (NH3 +) and the OH groups. Comparisons of the experimental IR spectra to theoretical spectra obtained with density functional theory show that the NH3 + site is mainly favored. Evidence for the formation of both NH3-bound and OH-bound conformers is found only in tyramine, despite having similar solution- and gas-phase energetics to that of PABA. Since the structures cannot interconvert in the gas phase, this suggests an isomerization during the electrospray process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30126276</pmid><doi>10.1021/acs.jpca.8b05896</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4739-5447</orcidid><orcidid>https://orcid.org/0000-0003-3963-8784</orcidid><orcidid>https://orcid.org/0000-0002-5892-8667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2018-09, Vol.122 (37), p.7427-7436
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2091238643
source ACS Publications
title Probing the Structures of Solvent-Complexed Ions Formed in Electrospray Ionization Using Cryogenic Infrared Photodissociation Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Structures%20of%20Solvent-Complexed%20Ions%20Formed%20in%20Electrospray%20Ionization%20Using%20Cryogenic%20Infrared%20Photodissociation%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Bell,%20Matthew%20R&rft.date=2018-09-20&rft.volume=122&rft.issue=37&rft.spage=7427&rft.epage=7436&rft.pages=7427-7436&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.8b05896&rft_dat=%3Cproquest_cross%3E2091238643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091238643&rft_id=info:pmid/30126276&rfr_iscdi=true