Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T
Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulatio...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2019-01, Vol.81 (1), p.316-330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 1 |
container_start_page | 316 |
container_title | Magnetic resonance in medicine |
container_volume | 81 |
creator | Heo, Hye‐Young Zhang, Yi Jiang, Shanshan Zhou, Jinyuan |
description | Purpose
To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters.
Methods
Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters.
Results
The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (>2.1 μT) and at a longer saturation length under relatively low RF saturation powers ( |
doi_str_mv | 10.1002/mrm.27389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091233734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091233734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</originalsourceid><addsrcrecordid>eNp1kc9KHTEUh0Op1Kt24QuUQDe6mGv-TTNZykVbQSnU23VIMicamWSuyQzqI_StG73aRcFNDpzz5eNwfggdUrKkhLCTmOOSSd6pD2hBW8Ya1irxES2IFKThVIldtFfKHSFEKSk-oV1OKGt5xxfoz0XywwzJQcGjx_C4gRwipMkMeGOyiTBBrqOE3S3E4GobHt2tSTeAi5nmbKZQh1M2qXjI-Gh1dr0-xvVbDu5FabMJFZjjWD1zCekGmxRiFcWxh6FgM2GxlOsDtOPNUODza91Hv8_P1qsfzeXP7xer08vGiVaoRhlpwdJOUkGYl9Z0rVVM0N5wcLQnzLVUWNJWoLfgia9961XHvjkHlnO-j4623k0e72cok46hOBgGk2Cci2ZEUca55KKiX_9D78Y5p7qdZpRL2Yr6Vup4S7k8lpLB6009oclPmhL9nI-u-eiXfCr75dU42wj9P_ItkAqcbIGHMMDT-yZ99etqq_wLVFSbCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137754137</pqid></control><display><type>article</type><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</creator><creatorcontrib>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</creatorcontrib><description>Purpose
To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters.
Methods
Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters.
Results
The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (>2.1 μT) and at a longer saturation length under relatively low RF saturation powers (<1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied.
Conclusion
Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27389</identifier><identifier>PMID: 30125383</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Animal models ; Animals ; APT ; Brain ; Brain - diagnostic imaging ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; brain tumor ; Brain tumors ; CEST ; Computer Simulation ; Contrast Media ; Dependence ; Disease Models, Animal ; Exchanging ; Glioma - diagnostic imaging ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Mathematical models ; Monte Carlo Method ; Neoplasm Transplantation ; Neuroimaging ; Organic chemistry ; Parameter modification ; Protons ; Rats ; Rats, Inbred F344 ; Reproducibility of Results ; RF saturation length ; RF saturation power ; Saturation ; Tissues ; Tumors ; Water</subject><ispartof>Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.316-330</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</citedby><cites>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</cites><orcidid>0000-0002-7297-2015 ; 0000-0001-8738-1851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30125383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Hye‐Young</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Jinyuan</creatorcontrib><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters.
Methods
Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters.
Results
The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (>2.1 μT) and at a longer saturation length under relatively low RF saturation powers (<1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied.
Conclusion
Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</description><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>APT</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>brain tumor</subject><subject>Brain tumors</subject><subject>CEST</subject><subject>Computer Simulation</subject><subject>Contrast Media</subject><subject>Dependence</subject><subject>Disease Models, Animal</subject><subject>Exchanging</subject><subject>Glioma - diagnostic imaging</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Monte Carlo Method</subject><subject>Neoplasm Transplantation</subject><subject>Neuroimaging</subject><subject>Organic chemistry</subject><subject>Parameter modification</subject><subject>Protons</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Reproducibility of Results</subject><subject>RF saturation length</subject><subject>RF saturation power</subject><subject>Saturation</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Water</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9KHTEUh0Op1Kt24QuUQDe6mGv-TTNZykVbQSnU23VIMicamWSuyQzqI_StG73aRcFNDpzz5eNwfggdUrKkhLCTmOOSSd6pD2hBW8Ya1irxES2IFKThVIldtFfKHSFEKSk-oV1OKGt5xxfoz0XywwzJQcGjx_C4gRwipMkMeGOyiTBBrqOE3S3E4GobHt2tSTeAi5nmbKZQh1M2qXjI-Gh1dr0-xvVbDu5FabMJFZjjWD1zCekGmxRiFcWxh6FgM2GxlOsDtOPNUODza91Hv8_P1qsfzeXP7xer08vGiVaoRhlpwdJOUkGYl9Z0rVVM0N5wcLQnzLVUWNJWoLfgia9961XHvjkHlnO-j4623k0e72cok46hOBgGk2Cci2ZEUca55KKiX_9D78Y5p7qdZpRL2Yr6Vup4S7k8lpLB6009oclPmhL9nI-u-eiXfCr75dU42wj9P_ItkAqcbIGHMMDT-yZ99etqq_wLVFSbCA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Heo, Hye‐Young</creator><creator>Zhang, Yi</creator><creator>Jiang, Shanshan</creator><creator>Zhou, Jinyuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7297-2015</orcidid><orcidid>https://orcid.org/0000-0001-8738-1851</orcidid></search><sort><creationdate>201901</creationdate><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><author>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>APT</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>brain tumor</topic><topic>Brain tumors</topic><topic>CEST</topic><topic>Computer Simulation</topic><topic>Contrast Media</topic><topic>Dependence</topic><topic>Disease Models, Animal</topic><topic>Exchanging</topic><topic>Glioma - diagnostic imaging</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Monte Carlo Method</topic><topic>Neoplasm Transplantation</topic><topic>Neuroimaging</topic><topic>Organic chemistry</topic><topic>Parameter modification</topic><topic>Protons</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Reproducibility of Results</topic><topic>RF saturation length</topic><topic>RF saturation power</topic><topic>Saturation</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Hye‐Young</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Jinyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Hye‐Young</au><au>Zhang, Yi</au><au>Jiang, Shanshan</au><au>Zhou, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-01</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>316</spage><epage>330</epage><pages>316-330</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters.
Methods
Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters.
Results
The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (>2.1 μT) and at a longer saturation length under relatively low RF saturation powers (<1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied.
Conclusion
Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30125383</pmid><doi>10.1002/mrm.27389</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7297-2015</orcidid><orcidid>https://orcid.org/0000-0001-8738-1851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.316-330 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2091233734 |
source | MEDLINE; Wiley Free Content; Wiley Online Library All Journals |
subjects | Algorithms Animal models Animals APT Brain Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging brain tumor Brain tumors CEST Computer Simulation Contrast Media Dependence Disease Models, Animal Exchanging Glioma - diagnostic imaging Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Mathematical models Monte Carlo Method Neoplasm Transplantation Neuroimaging Organic chemistry Parameter modification Protons Rats Rats, Inbred F344 Reproducibility of Results RF saturation length RF saturation power Saturation Tissues Tumors Water |
title | Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20experimental%20parameters%20on%20chemical%20exchange%20saturation%20transfer%20(CEST)%20metrics%20of%20brain%20tumors%20using%20animal%20models%20at%204.7T&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Heo,%20Hye%E2%80%90Young&rft.date=2019-01&rft.volume=81&rft.issue=1&rft.spage=316&rft.epage=330&rft.pages=316-330&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27389&rft_dat=%3Cproquest_cross%3E2091233734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137754137&rft_id=info:pmid/30125383&rfr_iscdi=true |