Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T

Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2019-01, Vol.81 (1), p.316-330
Hauptverfasser: Heo, Hye‐Young, Zhang, Yi, Jiang, Shanshan, Zhou, Jinyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 1
container_start_page 316
container_title Magnetic resonance in medicine
container_volume 81
creator Heo, Hye‐Young
Zhang, Yi
Jiang, Shanshan
Zhou, Jinyuan
description Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters. Results The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (>2.1 μT) and at a longer saturation length under relatively low RF saturation powers (
doi_str_mv 10.1002/mrm.27389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091233734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091233734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</originalsourceid><addsrcrecordid>eNp1kc9KHTEUh0Op1Kt24QuUQDe6mGv-TTNZykVbQSnU23VIMicamWSuyQzqI_StG73aRcFNDpzz5eNwfggdUrKkhLCTmOOSSd6pD2hBW8Ya1irxES2IFKThVIldtFfKHSFEKSk-oV1OKGt5xxfoz0XywwzJQcGjx_C4gRwipMkMeGOyiTBBrqOE3S3E4GobHt2tSTeAi5nmbKZQh1M2qXjI-Gh1dr0-xvVbDu5FabMJFZjjWD1zCekGmxRiFcWxh6FgM2GxlOsDtOPNUODza91Hv8_P1qsfzeXP7xer08vGiVaoRhlpwdJOUkGYl9Z0rVVM0N5wcLQnzLVUWNJWoLfgia9961XHvjkHlnO-j4623k0e72cok46hOBgGk2Cci2ZEUca55KKiX_9D78Y5p7qdZpRL2Yr6Vup4S7k8lpLB6009oclPmhL9nI-u-eiXfCr75dU42wj9P_ItkAqcbIGHMMDT-yZ99etqq_wLVFSbCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137754137</pqid></control><display><type>article</type><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><source>MEDLINE</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</creator><creatorcontrib>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</creatorcontrib><description>Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters. Results The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (&gt;2.1 μT) and at a longer saturation length under relatively low RF saturation powers (&lt;1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied. Conclusion Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27389</identifier><identifier>PMID: 30125383</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Animal models ; Animals ; APT ; Brain ; Brain - diagnostic imaging ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; brain tumor ; Brain tumors ; CEST ; Computer Simulation ; Contrast Media ; Dependence ; Disease Models, Animal ; Exchanging ; Glioma - diagnostic imaging ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging ; Mathematical models ; Monte Carlo Method ; Neoplasm Transplantation ; Neuroimaging ; Organic chemistry ; Parameter modification ; Protons ; Rats ; Rats, Inbred F344 ; Reproducibility of Results ; RF saturation length ; RF saturation power ; Saturation ; Tissues ; Tumors ; Water</subject><ispartof>Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.316-330</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</citedby><cites>FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</cites><orcidid>0000-0002-7297-2015 ; 0000-0001-8738-1851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27389$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27389$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30125383$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heo, Hye‐Young</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Jinyuan</creatorcontrib><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters. Results The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (&gt;2.1 μT) and at a longer saturation length under relatively low RF saturation powers (&lt;1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied. Conclusion Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</description><subject>Algorithms</subject><subject>Animal models</subject><subject>Animals</subject><subject>APT</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>brain tumor</subject><subject>Brain tumors</subject><subject>CEST</subject><subject>Computer Simulation</subject><subject>Contrast Media</subject><subject>Dependence</subject><subject>Disease Models, Animal</subject><subject>Exchanging</subject><subject>Glioma - diagnostic imaging</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>Monte Carlo Method</subject><subject>Neoplasm Transplantation</subject><subject>Neuroimaging</subject><subject>Organic chemistry</subject><subject>Parameter modification</subject><subject>Protons</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Reproducibility of Results</subject><subject>RF saturation length</subject><subject>RF saturation power</subject><subject>Saturation</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Water</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9KHTEUh0Op1Kt24QuUQDe6mGv-TTNZykVbQSnU23VIMicamWSuyQzqI_StG73aRcFNDpzz5eNwfggdUrKkhLCTmOOSSd6pD2hBW8Ya1irxES2IFKThVIldtFfKHSFEKSk-oV1OKGt5xxfoz0XywwzJQcGjx_C4gRwipMkMeGOyiTBBrqOE3S3E4GobHt2tSTeAi5nmbKZQh1M2qXjI-Gh1dr0-xvVbDu5FabMJFZjjWD1zCekGmxRiFcWxh6FgM2GxlOsDtOPNUODza91Hv8_P1qsfzeXP7xer08vGiVaoRhlpwdJOUkGYl9Z0rVVM0N5wcLQnzLVUWNJWoLfgia9961XHvjkHlnO-j4623k0e72cok46hOBgGk2Cci2ZEUca55KKiX_9D78Y5p7qdZpRL2Yr6Vup4S7k8lpLB6009oclPmhL9nI-u-eiXfCr75dU42wj9P_ItkAqcbIGHMMDT-yZ99etqq_wLVFSbCA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Heo, Hye‐Young</creator><creator>Zhang, Yi</creator><creator>Jiang, Shanshan</creator><creator>Zhou, Jinyuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7297-2015</orcidid><orcidid>https://orcid.org/0000-0001-8738-1851</orcidid></search><sort><creationdate>201901</creationdate><title>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</title><author>Heo, Hye‐Young ; Zhang, Yi ; Jiang, Shanshan ; Zhou, Jinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4549-9a7beb1871402f7ba85b9241da3ec1d02c514b05871dbef0fa3ebf9826cceb333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animal models</topic><topic>Animals</topic><topic>APT</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>brain tumor</topic><topic>Brain tumors</topic><topic>CEST</topic><topic>Computer Simulation</topic><topic>Contrast Media</topic><topic>Dependence</topic><topic>Disease Models, Animal</topic><topic>Exchanging</topic><topic>Glioma - diagnostic imaging</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>Monte Carlo Method</topic><topic>Neoplasm Transplantation</topic><topic>Neuroimaging</topic><topic>Organic chemistry</topic><topic>Parameter modification</topic><topic>Protons</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Reproducibility of Results</topic><topic>RF saturation length</topic><topic>RF saturation power</topic><topic>Saturation</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Hye‐Young</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Jiang, Shanshan</creatorcontrib><creatorcontrib>Zhou, Jinyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Hye‐Young</au><au>Zhang, Yi</au><au>Jiang, Shanshan</au><au>Zhou, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-01</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>316</spage><epage>330</epage><pages>316-330</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To investigate the dependence of magnetization transfer ratio asymmetry at 3.5 ppm (MTRasym(3.5 ppm)), quantitative amide proton transfer (APT#), and nuclear Overhauser enhancement (NOE#) signals or contrasts on experimental imaging parameters. Methods Modified Bloch equation‐based simulations using 2‐pool and 5‐pool exchange models and in vivo rat brain tumor experiments at 4.7T were performed with varied RF saturation power levels, saturation lengths, and relaxation delays. The MTRasym(3.5 ppm), APT#, and NOE# contrasts between tumor and normal tissues were compared among different experimental parameters. Results The MTRasym(3.5 ppm) image contrasts between tumor and normal tissues initially increased with the RF saturation length, and the maxima occurred at 1.6−2 s under relatively high RF saturation powers (&gt;2.1 μT) and at a longer saturation length under relatively low RF saturation powers (&lt;1.3 μT). The APT# contrasts also increased with the RF saturation length but peaked at longer RF saturation lengths relative to MTRasym(3.5 ppm). The NOE# contrasts were either positive or negative, depending on the experimental parameters applied. Conclusion Tumor MTRasym(3.5 ppm), APT#, and NOE# contrasts can be maximized at different saturation parameters. The maximum MTRasym(3.5 ppm) contrast can be obtained with a relatively longer RF saturation length (several seconds) at a relatively lower RF saturation power.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30125383</pmid><doi>10.1002/mrm.27389</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-7297-2015</orcidid><orcidid>https://orcid.org/0000-0001-8738-1851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2019-01, Vol.81 (1), p.316-330
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2091233734
source MEDLINE; Wiley Free Content; Wiley Online Library All Journals
subjects Algorithms
Animal models
Animals
APT
Brain
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
brain tumor
Brain tumors
CEST
Computer Simulation
Contrast Media
Dependence
Disease Models, Animal
Exchanging
Glioma - diagnostic imaging
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Mathematical models
Monte Carlo Method
Neoplasm Transplantation
Neuroimaging
Organic chemistry
Parameter modification
Protons
Rats
Rats, Inbred F344
Reproducibility of Results
RF saturation length
RF saturation power
Saturation
Tissues
Tumors
Water
title Influences of experimental parameters on chemical exchange saturation transfer (CEST) metrics of brain tumors using animal models at 4.7T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20experimental%20parameters%20on%20chemical%20exchange%20saturation%20transfer%20(CEST)%20metrics%20of%20brain%20tumors%20using%20animal%20models%20at%204.7T&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Heo,%20Hye%E2%80%90Young&rft.date=2019-01&rft.volume=81&rft.issue=1&rft.spage=316&rft.epage=330&rft.pages=316-330&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27389&rft_dat=%3Cproquest_cross%3E2091233734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137754137&rft_id=info:pmid/30125383&rfr_iscdi=true