Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair

The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and Genome Research 2003-01, Vol.100 (1-4), p.7-24
Hauptverfasser: Lenzmeier, B.A., Freudenreich, C.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1-4
container_start_page 7
container_title Cytogenetic and Genome Research
container_volume 100
creator Lenzmeier, B.A.
Freudenreich, C.H.
description The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.   
doi_str_mv 10.1159/000072836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20903371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20903371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</originalsourceid><addsrcrecordid>eNqF0kuLFDEQAOD4wn24B8-CNB4EwdFU3vEmiy9Y8LLC3pp0uuJm7e6MSbew_94MPYzgZXIJRX1Vh6oi5DnQdwDSvqf1aWa4ekDOOAdDgVJ785CcgmBiY6S9eUQurDbcUCm1YiAfH3IGTshZKXeUghFSPSUnICRToNgpGa9znBY_YJpjj03GLbq5iVOZXReHON9_aFxz62LexqnxS_6DTc3Pt9j4nErJyfWlSWFXOETv5pimtzXwaezitA_d1O_ytckz8iS4oeDF_j8nPz5_ur78urn6_uXb5cerjRdGzxuwSisbsOuUd0pIQ4NHJ1BpbVTQWongEG3vqXYQaLBohQxU9ixYroLg5-T12neb0-8Fy9yOsXgcBjdhWkqr5W6WWh6FDJiWRtjjkFrKuYajEIyVHJSu8NV_8C4teapjaRkTDHTdeEVvVrROG0O7zXF0-b4F2u4Ooz0cRrUv9w2XbsT-n9wvu4IXK_jl8k_MB7CW_wVMsbca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224217000</pqid></control><display><type>article</type><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Lenzmeier, B.A. ; Freudenreich, C.H.</creator><creatorcontrib>Lenzmeier, B.A. ; Freudenreich, C.H.</creatorcontrib><description>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.   </description><identifier>ISSN: 1424-8581</identifier><identifier>ISBN: 9783805576215</identifier><identifier>ISBN: 3805576218</identifier><identifier>EISSN: 1424-859X</identifier><identifier>EISBN: 331801009X</identifier><identifier>EISBN: 9783318010091</identifier><identifier>DOI: 10.1159/000072836</identifier><identifier>PMID: 14526162</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>DNA - chemistry ; DNA - genetics ; DNA Repair ; DNA repeat expansion ; Humans ; Models, Genetic ; Nucleic Acid Conformation ; Recombination, Genetic - genetics ; Trinucleotide Repeat Expansion - genetics</subject><ispartof>Cytogenetic and Genome Research, 2003-01, Vol.100 (1-4), p.7-24</ispartof><rights>2003 S. Karger AG, Basel</rights><rights>Copyright 2003 S. Karger AG, Basel</rights><rights>Copyright (c) 2003 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</citedby><cites>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2422,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14526162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenzmeier, B.A.</creatorcontrib><creatorcontrib>Freudenreich, C.H.</creatorcontrib><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><title>Cytogenetic and Genome Research</title><addtitle>Cytogenet Genome Res</addtitle><description>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.   </description><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA Repair</subject><subject>DNA repeat expansion</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Nucleic Acid Conformation</subject><subject>Recombination, Genetic - genetics</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><issn>1424-8581</issn><issn>1424-859X</issn><isbn>9783805576215</isbn><isbn>3805576218</isbn><isbn>331801009X</isbn><isbn>9783318010091</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0kuLFDEQAOD4wn24B8-CNB4EwdFU3vEmiy9Y8LLC3pp0uuJm7e6MSbew_94MPYzgZXIJRX1Vh6oi5DnQdwDSvqf1aWa4ekDOOAdDgVJ785CcgmBiY6S9eUQurDbcUCm1YiAfH3IGTshZKXeUghFSPSUnICRToNgpGa9znBY_YJpjj03GLbq5iVOZXReHON9_aFxz62LexqnxS_6DTc3Pt9j4nErJyfWlSWFXOETv5pimtzXwaezitA_d1O_ytckz8iS4oeDF_j8nPz5_ur78urn6_uXb5cerjRdGzxuwSisbsOuUd0pIQ4NHJ1BpbVTQWongEG3vqXYQaLBohQxU9ixYroLg5-T12neb0-8Fy9yOsXgcBjdhWkqr5W6WWh6FDJiWRtjjkFrKuYajEIyVHJSu8NV_8C4teapjaRkTDHTdeEVvVrROG0O7zXF0-b4F2u4Ooz0cRrUv9w2XbsT-n9wvu4IXK_jl8k_MB7CW_wVMsbca</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Lenzmeier, B.A.</creator><creator>Freudenreich, C.H.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><author>Lenzmeier, B.A. ; Freudenreich, C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA Repair</topic><topic>DNA repeat expansion</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Nucleic Acid Conformation</topic><topic>Recombination, Genetic - genetics</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenzmeier, B.A.</creatorcontrib><creatorcontrib>Freudenreich, C.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and Genome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenzmeier, B.A.</au><au>Freudenreich, C.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</atitle><jtitle>Cytogenetic and Genome Research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>100</volume><issue>1-4</issue><spage>7</spage><epage>24</epage><pages>7-24</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><isbn>9783805576215</isbn><isbn>3805576218</isbn><eisbn>331801009X</eisbn><eisbn>9783318010091</eisbn><abstract>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.   </abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>14526162</pmid><doi>10.1159/000072836</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-8581
ispartof Cytogenetic and Genome Research, 2003-01, Vol.100 (1-4), p.7-24
issn 1424-8581
1424-859X
language eng
recordid cdi_proquest_miscellaneous_20903371
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects DNA - chemistry
DNA - genetics
DNA Repair
DNA repeat expansion
Humans
Models, Genetic
Nucleic Acid Conformation
Recombination, Genetic - genetics
Trinucleotide Repeat Expansion - genetics
title Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trinucleotide%20repeat%20instability:%20a%20hairpin%20curve%20at%20the%20crossroads%20of%20replication,%20recombination,%20and%20repair&rft.jtitle=Cytogenetic%20and%20Genome%20Research&rft.au=Lenzmeier,%20B.A.&rft.date=2003-01-01&rft.volume=100&rft.issue=1-4&rft.spage=7&rft.epage=24&rft.pages=7-24&rft.issn=1424-8581&rft.eissn=1424-859X&rft.isbn=9783805576215&rft.isbn_list=3805576218&rft_id=info:doi/10.1159/000072836&rft_dat=%3Cproquest_cross%3E20903371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=331801009X&rft.eisbn_list=9783318010091&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224217000&rft_id=info:pmid/14526162&rfr_iscdi=true