Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair
The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve i...
Gespeichert in:
Veröffentlicht in: | Cytogenetic and Genome Research 2003-01, Vol.100 (1-4), p.7-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1-4 |
container_start_page | 7 |
container_title | Cytogenetic and Genome Research |
container_volume | 100 |
creator | Lenzmeier, B.A. Freudenreich, C.H. |
description | The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo. |
doi_str_mv | 10.1159/000072836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20903371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20903371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</originalsourceid><addsrcrecordid>eNqF0kuLFDEQAOD4wn24B8-CNB4EwdFU3vEmiy9Y8LLC3pp0uuJm7e6MSbew_94MPYzgZXIJRX1Vh6oi5DnQdwDSvqf1aWa4ekDOOAdDgVJ785CcgmBiY6S9eUQurDbcUCm1YiAfH3IGTshZKXeUghFSPSUnICRToNgpGa9znBY_YJpjj03GLbq5iVOZXReHON9_aFxz62LexqnxS_6DTc3Pt9j4nErJyfWlSWFXOETv5pimtzXwaezitA_d1O_ytckz8iS4oeDF_j8nPz5_ur78urn6_uXb5cerjRdGzxuwSisbsOuUd0pIQ4NHJ1BpbVTQWongEG3vqXYQaLBohQxU9ixYroLg5-T12neb0-8Fy9yOsXgcBjdhWkqr5W6WWh6FDJiWRtjjkFrKuYajEIyVHJSu8NV_8C4teapjaRkTDHTdeEVvVrROG0O7zXF0-b4F2u4Ooz0cRrUv9w2XbsT-n9wvu4IXK_jl8k_MB7CW_wVMsbca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224217000</pqid></control><display><type>article</type><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Lenzmeier, B.A. ; Freudenreich, C.H.</creator><creatorcontrib>Lenzmeier, B.A. ; Freudenreich, C.H.</creatorcontrib><description>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo. </description><identifier>ISSN: 1424-8581</identifier><identifier>ISBN: 9783805576215</identifier><identifier>ISBN: 3805576218</identifier><identifier>EISSN: 1424-859X</identifier><identifier>EISBN: 331801009X</identifier><identifier>EISBN: 9783318010091</identifier><identifier>DOI: 10.1159/000072836</identifier><identifier>PMID: 14526162</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>DNA - chemistry ; DNA - genetics ; DNA Repair ; DNA repeat expansion ; Humans ; Models, Genetic ; Nucleic Acid Conformation ; Recombination, Genetic - genetics ; Trinucleotide Repeat Expansion - genetics</subject><ispartof>Cytogenetic and Genome Research, 2003-01, Vol.100 (1-4), p.7-24</ispartof><rights>2003 S. Karger AG, Basel</rights><rights>Copyright 2003 S. Karger AG, Basel</rights><rights>Copyright (c) 2003 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</citedby><cites>FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2422,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14526162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenzmeier, B.A.</creatorcontrib><creatorcontrib>Freudenreich, C.H.</creatorcontrib><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><title>Cytogenetic and Genome Research</title><addtitle>Cytogenet Genome Res</addtitle><description>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo. </description><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA Repair</subject><subject>DNA repeat expansion</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Nucleic Acid Conformation</subject><subject>Recombination, Genetic - genetics</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><issn>1424-8581</issn><issn>1424-859X</issn><isbn>9783805576215</isbn><isbn>3805576218</isbn><isbn>331801009X</isbn><isbn>9783318010091</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0kuLFDEQAOD4wn24B8-CNB4EwdFU3vEmiy9Y8LLC3pp0uuJm7e6MSbew_94MPYzgZXIJRX1Vh6oi5DnQdwDSvqf1aWa4ekDOOAdDgVJ785CcgmBiY6S9eUQurDbcUCm1YiAfH3IGTshZKXeUghFSPSUnICRToNgpGa9znBY_YJpjj03GLbq5iVOZXReHON9_aFxz62LexqnxS_6DTc3Pt9j4nErJyfWlSWFXOETv5pimtzXwaezitA_d1O_ytckz8iS4oeDF_j8nPz5_ur78urn6_uXb5cerjRdGzxuwSisbsOuUd0pIQ4NHJ1BpbVTQWongEG3vqXYQaLBohQxU9ixYroLg5-T12neb0-8Fy9yOsXgcBjdhWkqr5W6WWh6FDJiWRtjjkFrKuYajEIyVHJSu8NV_8C4teapjaRkTDHTdeEVvVrROG0O7zXF0-b4F2u4Ooz0cRrUv9w2XbsT-n9wvu4IXK_jl8k_MB7CW_wVMsbca</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Lenzmeier, B.A.</creator><creator>Freudenreich, C.H.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</title><author>Lenzmeier, B.A. ; Freudenreich, C.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-196769febb6ca64580fcea4e67786f7764faee9dc07a1f0f9e945f05d2f936f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA Repair</topic><topic>DNA repeat expansion</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Nucleic Acid Conformation</topic><topic>Recombination, Genetic - genetics</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenzmeier, B.A.</creatorcontrib><creatorcontrib>Freudenreich, C.H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and Genome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenzmeier, B.A.</au><au>Freudenreich, C.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair</atitle><jtitle>Cytogenetic and Genome Research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>100</volume><issue>1-4</issue><spage>7</spage><epage>24</epage><pages>7-24</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><isbn>9783805576215</isbn><isbn>3805576218</isbn><eisbn>331801009X</eisbn><eisbn>9783318010091</eisbn><abstract>The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo. </abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>14526162</pmid><doi>10.1159/000072836</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8581 |
ispartof | Cytogenetic and Genome Research, 2003-01, Vol.100 (1-4), p.7-24 |
issn | 1424-8581 1424-859X |
language | eng |
recordid | cdi_proquest_miscellaneous_20903371 |
source | MEDLINE; Karger Journals; Alma/SFX Local Collection |
subjects | DNA - chemistry DNA - genetics DNA Repair DNA repeat expansion Humans Models, Genetic Nucleic Acid Conformation Recombination, Genetic - genetics Trinucleotide Repeat Expansion - genetics |
title | Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trinucleotide%20repeat%20instability:%20a%20hairpin%20curve%20at%20the%20crossroads%20of%20replication,%20recombination,%20and%20repair&rft.jtitle=Cytogenetic%20and%20Genome%20Research&rft.au=Lenzmeier,%20B.A.&rft.date=2003-01-01&rft.volume=100&rft.issue=1-4&rft.spage=7&rft.epage=24&rft.pages=7-24&rft.issn=1424-8581&rft.eissn=1424-859X&rft.isbn=9783805576215&rft.isbn_list=3805576218&rft_id=info:doi/10.1159/000072836&rft_dat=%3Cproquest_cross%3E20903371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&rft.eisbn=331801009X&rft.eisbn_list=9783318010091&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224217000&rft_id=info:pmid/14526162&rfr_iscdi=true |