Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation

In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2018, Vol.20 (34), p.22308-22319
Hauptverfasser: Yaghoubi, Hamzeh, Foroutan, Masumeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22319
container_issue 34
container_start_page 22308
container_title Physical chemistry chemical physics : PCCP
container_volume 20
creator Yaghoubi, Hamzeh
Foroutan, Masumeh
description In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.
doi_str_mv 10.1039/c8cp03762k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2090316355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090316355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIqeBXHl6iiJcoggWsg-NMWpckLnYM6t-TUOiCxWhGo6OjmYvQMSUXlHB5qVO9IjyJ2fsOGlMR86kkqdjdzkk8QgfeLwkhNKJ8H404oUwkRIzR26OtQYdaOWzaT_CdmavO2BbbCncLwF_QdaowtenWw8rZMF9gH1ylNHgcvGnnuNkqynWrGqM99qbpF4PoEO1VqvZw9Nsn6PXm-iW7m86ebu-zq9lUc8m7KQMoqhKYTCqqmKAy4SAKrTXRKWUyreK-CgEiSikRRVKwiMVABE9FUopS8Ak623hXzn6E_pG8MV5DXasWbPA5I5JwGvMo6tHTf-jSBtf21w1UFAtKJe2p8w2lnfXeQZWvnGmUW-eU5EPueZZmzz-5P_Twya8yFA2UW_QvaP4Ni_V-Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095641191</pqid></control><display><type>article</type><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Yaghoubi, Hamzeh ; Foroutan, Masumeh</creator><creatorcontrib>Yaghoubi, Hamzeh ; Foroutan, Masumeh</creatorcontrib><description>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp03762k</identifier><identifier>PMID: 30124704</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adhesive bonding ; Computer simulation ; Contact angle ; Free energy ; Grooves ; Hydrogen bonds ; Molecular dynamics ; Residential density ; Solid surfaces ; Substrates ; Surface roughness ; Water chemistry ; Wettability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.20 (34), p.22308-22319</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</citedby><cites>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</cites><orcidid>0000-0002-1654-7997 ; 0000-0002-9160-9457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30124704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaghoubi, Hamzeh</creatorcontrib><creatorcontrib>Foroutan, Masumeh</creatorcontrib><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</description><subject>Adhesive bonding</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Free energy</subject><subject>Grooves</subject><subject>Hydrogen bonds</subject><subject>Molecular dynamics</subject><subject>Residential density</subject><subject>Solid surfaces</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Water chemistry</subject><subject>Wettability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIqeBXHl6iiJcoggWsg-NMWpckLnYM6t-TUOiCxWhGo6OjmYvQMSUXlHB5qVO9IjyJ2fsOGlMR86kkqdjdzkk8QgfeLwkhNKJ8H404oUwkRIzR26OtQYdaOWzaT_CdmavO2BbbCncLwF_QdaowtenWw8rZMF9gH1ylNHgcvGnnuNkqynWrGqM99qbpF4PoEO1VqvZw9Nsn6PXm-iW7m86ebu-zq9lUc8m7KQMoqhKYTCqqmKAy4SAKrTXRKWUyreK-CgEiSikRRVKwiMVABE9FUopS8Ak623hXzn6E_pG8MV5DXasWbPA5I5JwGvMo6tHTf-jSBtf21w1UFAtKJe2p8w2lnfXeQZWvnGmUW-eU5EPueZZmzz-5P_Twya8yFA2UW_QvaP4Ni_V-Tg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yaghoubi, Hamzeh</creator><creator>Foroutan, Masumeh</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1654-7997</orcidid><orcidid>https://orcid.org/0000-0002-9160-9457</orcidid></search><sort><creationdate>2018</creationdate><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><author>Yaghoubi, Hamzeh ; Foroutan, Masumeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Free energy</topic><topic>Grooves</topic><topic>Hydrogen bonds</topic><topic>Molecular dynamics</topic><topic>Residential density</topic><topic>Solid surfaces</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Water chemistry</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoubi, Hamzeh</creatorcontrib><creatorcontrib>Foroutan, Masumeh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghoubi, Hamzeh</au><au>Foroutan, Masumeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>34</issue><spage>22308</spage><epage>22319</epage><pages>22308-22319</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30124704</pmid><doi>10.1039/c8cp03762k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1654-7997</orcidid><orcidid>https://orcid.org/0000-0002-9160-9457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018, Vol.20 (34), p.22308-22319
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2090316355
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Adhesive bonding
Computer simulation
Contact angle
Free energy
Grooves
Hydrogen bonds
Molecular dynamics
Residential density
Solid surfaces
Substrates
Surface roughness
Water chemistry
Wettability
title Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20investigation%20of%20the%20wettability%20of%20rough%20surfaces%20using%20molecular%20dynamics%20simulation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yaghoubi,%20Hamzeh&rft.date=2018&rft.volume=20&rft.issue=34&rft.spage=22308&rft.epage=22319&rft.pages=22308-22319&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp03762k&rft_dat=%3Cproquest_cross%3E2090316355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095641191&rft_id=info:pmid/30124704&rfr_iscdi=true