Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation
In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2018, Vol.20 (34), p.22308-22319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22319 |
---|---|
container_issue | 34 |
container_start_page | 22308 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 20 |
creator | Yaghoubi, Hamzeh Foroutan, Masumeh |
description | In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet. |
doi_str_mv | 10.1039/c8cp03762k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2090316355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090316355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIqeBXHl6iiJcoggWsg-NMWpckLnYM6t-TUOiCxWhGo6OjmYvQMSUXlHB5qVO9IjyJ2fsOGlMR86kkqdjdzkk8QgfeLwkhNKJ8H404oUwkRIzR26OtQYdaOWzaT_CdmavO2BbbCncLwF_QdaowtenWw8rZMF9gH1ylNHgcvGnnuNkqynWrGqM99qbpF4PoEO1VqvZw9Nsn6PXm-iW7m86ebu-zq9lUc8m7KQMoqhKYTCqqmKAy4SAKrTXRKWUyreK-CgEiSikRRVKwiMVABE9FUopS8Ak623hXzn6E_pG8MV5DXasWbPA5I5JwGvMo6tHTf-jSBtf21w1UFAtKJe2p8w2lnfXeQZWvnGmUW-eU5EPueZZmzz-5P_Twya8yFA2UW_QvaP4Ni_V-Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095641191</pqid></control><display><type>article</type><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Yaghoubi, Hamzeh ; Foroutan, Masumeh</creator><creatorcontrib>Yaghoubi, Hamzeh ; Foroutan, Masumeh</creatorcontrib><description>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp03762k</identifier><identifier>PMID: 30124704</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adhesive bonding ; Computer simulation ; Contact angle ; Free energy ; Grooves ; Hydrogen bonds ; Molecular dynamics ; Residential density ; Solid surfaces ; Substrates ; Surface roughness ; Water chemistry ; Wettability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018, Vol.20 (34), p.22308-22319</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</citedby><cites>FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</cites><orcidid>0000-0002-1654-7997 ; 0000-0002-9160-9457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30124704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yaghoubi, Hamzeh</creatorcontrib><creatorcontrib>Foroutan, Masumeh</creatorcontrib><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</description><subject>Adhesive bonding</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Free energy</subject><subject>Grooves</subject><subject>Hydrogen bonds</subject><subject>Molecular dynamics</subject><subject>Residential density</subject><subject>Solid surfaces</subject><subject>Substrates</subject><subject>Surface roughness</subject><subject>Water chemistry</subject><subject>Wettability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIqeBXHl6iiJcoggWsg-NMWpckLnYM6t-TUOiCxWhGo6OjmYvQMSUXlHB5qVO9IjyJ2fsOGlMR86kkqdjdzkk8QgfeLwkhNKJ8H404oUwkRIzR26OtQYdaOWzaT_CdmavO2BbbCncLwF_QdaowtenWw8rZMF9gH1ylNHgcvGnnuNkqynWrGqM99qbpF4PoEO1VqvZw9Nsn6PXm-iW7m86ebu-zq9lUc8m7KQMoqhKYTCqqmKAy4SAKrTXRKWUyreK-CgEiSikRRVKwiMVABE9FUopS8Ak623hXzn6E_pG8MV5DXasWbPA5I5JwGvMo6tHTf-jSBtf21w1UFAtKJe2p8w2lnfXeQZWvnGmUW-eU5EPueZZmzz-5P_Twya8yFA2UW_QvaP4Ni_V-Tg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Yaghoubi, Hamzeh</creator><creator>Foroutan, Masumeh</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1654-7997</orcidid><orcidid>https://orcid.org/0000-0002-9160-9457</orcidid></search><sort><creationdate>2018</creationdate><title>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</title><author>Yaghoubi, Hamzeh ; Foroutan, Masumeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2eebfde297f1a241973e4bccc0c81298f698fb4e458104b7b2526e043847d4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Free energy</topic><topic>Grooves</topic><topic>Hydrogen bonds</topic><topic>Molecular dynamics</topic><topic>Residential density</topic><topic>Solid surfaces</topic><topic>Substrates</topic><topic>Surface roughness</topic><topic>Water chemistry</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoubi, Hamzeh</creatorcontrib><creatorcontrib>Foroutan, Masumeh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghoubi, Hamzeh</au><au>Foroutan, Masumeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>34</issue><spage>22308</spage><epage>22319</epage><pages>22308-22319</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In the present study, a computational investigation on the effect of surface roughness on the wettability behavior of water nanodroplets has been performed via molecular dynamics simulation. To fabricate the roughness, several grooves with different depths and widths were considered on the top layer(s) of graphite. Free energy analysis indicates that surface roughness reduces the solid-liquid adhesion and the work done for the removal of the nanodroplet from the solid surface. This reduction increases with an increase in both the depth and width of the grooves. Furthermore, the adhesion in Wenzel state is greater than that in the Cassie-Baxter state. Results show that increasing the depth and decreasing the width of the grooves decrease the wettability and the nanodroplet locates in the Cassie-Baxter state. In addition, both the Cassie-Baxter and Wenzel models effectively predict the nanodroplet contact angle on the rough surfaces. Furthermore, the probability of successful interactions decreases in the solid-liquid interfaces due to the heterogeneity of the surface. Therefore, the density, the residence time and the hydrogen bond lifetime of the water molecules in the layer in the vicinity of the substrate decrease. In addition, surface roughness affects the orientation of the water molecules at the interface, the diffusion of water molecules as well as the movement of the water nanodroplet.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30124704</pmid><doi>10.1039/c8cp03762k</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1654-7997</orcidid><orcidid>https://orcid.org/0000-0002-9160-9457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2018, Vol.20 (34), p.22308-22319 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2090316355 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Adhesive bonding Computer simulation Contact angle Free energy Grooves Hydrogen bonds Molecular dynamics Residential density Solid surfaces Substrates Surface roughness Water chemistry Wettability |
title | Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T03%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20investigation%20of%20the%20wettability%20of%20rough%20surfaces%20using%20molecular%20dynamics%20simulation&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Yaghoubi,%20Hamzeh&rft.date=2018&rft.volume=20&rft.issue=34&rft.spage=22308&rft.epage=22319&rft.pages=22308-22319&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp03762k&rft_dat=%3Cproquest_cross%3E2090316355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2095641191&rft_id=info:pmid/30124704&rfr_iscdi=true |