Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements

A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscositythe viscosity on a time and distance scale that is important for protein folding/f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2018-12, Vol.122 (49), p.11381-11389
Hauptverfasser: Chen, Eefei, Esquerra, Raymond M, Meléndez, Philipp A, Chandrasekaran, Sita S, Kliger, David S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11389
container_issue 49
container_start_page 11381
container_title The journal of physical chemistry. B
container_volume 122
creator Chen, Eefei
Esquerra, Raymond M
Meléndez, Philipp A
Chandrasekaran, Sita S
Kliger, David S
description A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscositythe viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell’s heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.
doi_str_mv 10.1021/acs.jpcb.8b07362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089860235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089860235</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-c813fec775fb0844738635ac5c30bc358d0da514257b324a73f3c5911a92ecad3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EolDYmZBHBlLOdpy4IyrlQ2oFQmW2HMcRrpK42Eml_ve4NLAxnO6G957u_RC6IjAhQMmd0mGy3uhiIgrIWUaP0BnhFJI4-fFwZwSyEToPYQ1AORXZKRoxIERQys_Q29Jq77Y2aBdst8O2xfMJ1q62eGbqOuDKuwavbGOSdxNcvTUlXtjWKI8frP70zoYGL40KvTeNabtwgU4qVQdzOewx-nicr2bPyeL16WV2v0gUY1mXaEFYZXSe86oAkaY5ExnjSnPNoNCMixJKxUlKeV4wmqqcVUzzKSFqSo1WJRujm0Puxruv3oRONrFEfFm1xvVBUhBTkQFlPErhII1NQ_CmkhtvG-V3koDcc5SRo9xzlAPHaLke0vuiMeWf4RdcFNweBD9W1_s2lv0_7xvEzX4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089860235</pqid></control><display><type>article</type><title>Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements</title><source>ACS Publications</source><creator>Chen, Eefei ; Esquerra, Raymond M ; Meléndez, Philipp A ; Chandrasekaran, Sita S ; Kliger, David S</creator><creatorcontrib>Chen, Eefei ; Esquerra, Raymond M ; Meléndez, Philipp A ; Chandrasekaran, Sita S ; Kliger, David S</creatorcontrib><description>A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscositythe viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell’s heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b07362</identifier><identifier>PMID: 30118225</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11381-11389</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-c813fec775fb0844738635ac5c30bc358d0da514257b324a73f3c5911a92ecad3</citedby><cites>FETCH-LOGICAL-a336t-c813fec775fb0844738635ac5c30bc358d0da514257b324a73f3c5911a92ecad3</cites><orcidid>0000-0001-7411-7779 ; 0000-0003-4083-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b07362$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b07362$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Eefei</creatorcontrib><creatorcontrib>Esquerra, Raymond M</creatorcontrib><creatorcontrib>Meléndez, Philipp A</creatorcontrib><creatorcontrib>Chandrasekaran, Sita S</creatorcontrib><creatorcontrib>Kliger, David S</creatorcontrib><title>Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscositythe viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell’s heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EolDYmZBHBlLOdpy4IyrlQ2oFQmW2HMcRrpK42Eml_ve4NLAxnO6G957u_RC6IjAhQMmd0mGy3uhiIgrIWUaP0BnhFJI4-fFwZwSyEToPYQ1AORXZKRoxIERQys_Q29Jq77Y2aBdst8O2xfMJ1q62eGbqOuDKuwavbGOSdxNcvTUlXtjWKI8frP70zoYGL40KvTeNabtwgU4qVQdzOewx-nicr2bPyeL16WV2v0gUY1mXaEFYZXSe86oAkaY5ExnjSnPNoNCMixJKxUlKeV4wmqqcVUzzKSFqSo1WJRujm0Puxruv3oRONrFEfFm1xvVBUhBTkQFlPErhII1NQ_CmkhtvG-V3koDcc5SRo9xzlAPHaLke0vuiMeWf4RdcFNweBD9W1_s2lv0_7xvEzX4Q</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Chen, Eefei</creator><creator>Esquerra, Raymond M</creator><creator>Meléndez, Philipp A</creator><creator>Chandrasekaran, Sita S</creator><creator>Kliger, David S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7411-7779</orcidid><orcidid>https://orcid.org/0000-0003-4083-7369</orcidid></search><sort><creationdate>20181213</creationdate><title>Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements</title><author>Chen, Eefei ; Esquerra, Raymond M ; Meléndez, Philipp A ; Chandrasekaran, Sita S ; Kliger, David S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-c813fec775fb0844738635ac5c30bc358d0da514257b324a73f3c5911a92ecad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Eefei</creatorcontrib><creatorcontrib>Esquerra, Raymond M</creatorcontrib><creatorcontrib>Meléndez, Philipp A</creatorcontrib><creatorcontrib>Chandrasekaran, Sita S</creatorcontrib><creatorcontrib>Kliger, David S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Eefei</au><au>Esquerra, Raymond M</au><au>Meléndez, Philipp A</au><au>Chandrasekaran, Sita S</au><au>Kliger, David S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>122</volume><issue>49</issue><spage>11381</spage><epage>11389</epage><pages>11381-11389</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A protein’s folding or function depends on its mobility through the viscous environment that is defined by the presence of macromolecules throughout the cell. The relevant parameter for this mobility is microviscositythe viscosity on a time and distance scale that is important for protein folding/function movements. A quasi-null, ultrasensitive time-resolved linear dichroism (TRLD) spectroscopy is proving to be a useful tool for measurements of viscosity on this scale, with previous in vitro studies reporting on the microviscosities of crowded environments mimicked by high concentrations of different macromolecules. This study reports the microviscosity experienced by myoglobin in the E. coli cell’s heterogeneous cytoplasm by using TRLD to measure rotational diffusion times. The results show that photolyzed deoxyMb ensembles randomize through environment-dependent rotational diffusion with a lifetime of 34 ± 6 ns. This value corresponds to a microviscosity of 2.82 ± 0.42 cP, which is consistent with previous reports of cytoplasmic viscosity in E. coli. The results of these TRLD studies in E. coli (1) provide a measurement of myoglobin mobility in the cytoplasm, (2) taken together with in vitro TRLD studies yield new insights into the nature of the cytoplasmic environment in cells, and (3) demonstrate the feasibility of TRLD as a probe of intracellular viscosity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30118225</pmid><doi>10.1021/acs.jpcb.8b07362</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7411-7779</orcidid><orcidid>https://orcid.org/0000-0003-4083-7369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11381-11389
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2089860235
source ACS Publications
title Microviscosity in E. coli Cells from Time-Resolved Linear Dichroism Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microviscosity%20in%20E.%20coli%20Cells%20from%20Time-Resolved%20Linear%20Dichroism%20Measurements&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chen,%20Eefei&rft.date=2018-12-13&rft.volume=122&rft.issue=49&rft.spage=11381&rft.epage=11389&rft.pages=11381-11389&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b07362&rft_dat=%3Cproquest_cross%3E2089860235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089860235&rft_id=info:pmid/30118225&rfr_iscdi=true