A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes

[Display omitted] In current study a holistic material characterization approach was proposed and an extensive raw material property database was developed including a wide variety of APIs and excipients with different functionalities. In total 55 different materials were characterized and described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2018-10, Vol.549 (1-2), p.415-435
Hauptverfasser: Van Snick, Bernd, Dhondt, Jens, Pandelaere, Kenny, Bertels, Johny, Mertens, Roel, Klingeleers, Didier, Di Pretoro, Giustino, Remon, Jean Paul, Vervaet, Chris, De Beer, Thomas, Vanhoorne, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 1-2
container_start_page 415
container_title International journal of pharmaceutics
container_volume 549
creator Van Snick, Bernd
Dhondt, Jens
Pandelaere, Kenny
Bertels, Johny
Mertens, Roel
Klingeleers, Didier
Di Pretoro, Giustino
Remon, Jean Paul
Vervaet, Chris
De Beer, Thomas
Vanhoorne, Valérie
description [Display omitted] In current study a holistic material characterization approach was proposed and an extensive raw material property database was developed including a wide variety of APIs and excipients with different functionalities. In total 55 different materials were characterized and described by over 100 raw material descriptors related to particle size and shape distribution, specific surface area, bulk, tapped and true density, compressibility, electrostatic charge, moisture content, hygroscopicity, permeability, flowability and wall friction. Principal component analysis (PCA) was applied to reveal similarities and dissimilarities between materials and to identify overarching properties. The developed PCA model allows to rationalize the number of critical characterization techniques in routine characterization and to identify surrogates for use during early drug product development stages when limited amounts of active pharmaceutical ingredients are available. Additionally, the developed database will be the basis to build predictive models for in silico process and formulation development based on (a selection of) property descriptors.
doi_str_mv 10.1016/j.ijpharm.2018.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089858388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517318305763</els_id><sourcerecordid>2089858388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-a71cccc1b1ffe3222def5e10828bc7e883353ea5566c8d77b13740c00f31e8e93</originalsourceid><addsrcrecordid>eNqFkc9u3CAQxlHVqtls-witOPbiDWNsQ05RFDV_pEi5pGeEYZyyso0DeKN9krxucXeTa9BIDNJvvo_RR8gPYBtg0JxtN247_dVh2JQM5IblguoTWYEUvOCVaD6TFeNCFjUIfkJOY9wyxpoS-FdywhmAlBxW5PWSDnOf3E4HpxPSoF_okJv86ukU_IQh7anVSbc6Ik2edtq43qUFtmF-WiA7m0Qt7rD304Bjonq0FEfd9kjdWMTMG5-B6J5G6jv6_9_a4JycyTY27OnkXyyGRcxgjBi_kS-d7iN-P95r8uf69-PVbXH_cHN3dXlfmIpDKrQAkw-00HXIy7K02NUITJayNQLzjrzmqOu6aYy0QrTARcUMYx0HlHjO1-TXQTc7P88YkxpcNNj3ekQ_R1UyeS5rybPSmtQH1AQfY8BOTcENOuwVMLVkorbqmIlaMlEsF1R57ufRYm4HtO9TbyFk4OIAYF505zCoaByOBq0LaJKy3n1g8Q-yD6RB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089858388</pqid></control><display><type>article</type><title>A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Van Snick, Bernd ; Dhondt, Jens ; Pandelaere, Kenny ; Bertels, Johny ; Mertens, Roel ; Klingeleers, Didier ; Di Pretoro, Giustino ; Remon, Jean Paul ; Vervaet, Chris ; De Beer, Thomas ; Vanhoorne, Valérie</creator><creatorcontrib>Van Snick, Bernd ; Dhondt, Jens ; Pandelaere, Kenny ; Bertels, Johny ; Mertens, Roel ; Klingeleers, Didier ; Di Pretoro, Giustino ; Remon, Jean Paul ; Vervaet, Chris ; De Beer, Thomas ; Vanhoorne, Valérie</creatorcontrib><description>[Display omitted] In current study a holistic material characterization approach was proposed and an extensive raw material property database was developed including a wide variety of APIs and excipients with different functionalities. In total 55 different materials were characterized and described by over 100 raw material descriptors related to particle size and shape distribution, specific surface area, bulk, tapped and true density, compressibility, electrostatic charge, moisture content, hygroscopicity, permeability, flowability and wall friction. Principal component analysis (PCA) was applied to reveal similarities and dissimilarities between materials and to identify overarching properties. The developed PCA model allows to rationalize the number of critical characterization techniques in routine characterization and to identify surrogates for use during early drug product development stages when limited amounts of active pharmaceutical ingredients are available. Additionally, the developed database will be the basis to build predictive models for in silico process and formulation development based on (a selection of) property descriptors.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2018.08.014</identifier><identifier>PMID: 30118831</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Computer Simulation ; Continuous direct compression ; Databases, Chemical ; Excipients - chemistry ; Friction ; In silico design ; Material characterization ; Models, Chemical ; Models, Statistical ; Multivariate Analysis ; Multivariate data analysis ; Particle Size ; Permeability ; Pharmaceutical drug product development ; Pharmaceutical Preparations - chemistry ; Porosity ; Powders ; Principal Component Analysis ; Technology, Pharmaceutical - methods ; Water - chemistry ; Wettability</subject><ispartof>International journal of pharmaceutics, 2018-10, Vol.549 (1-2), p.415-435</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-a71cccc1b1ffe3222def5e10828bc7e883353ea5566c8d77b13740c00f31e8e93</citedby><cites>FETCH-LOGICAL-c431t-a71cccc1b1ffe3222def5e10828bc7e883353ea5566c8d77b13740c00f31e8e93</cites><orcidid>0000-0001-7313-418X ; 0000-0003-4249-3408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517318305763$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Snick, Bernd</creatorcontrib><creatorcontrib>Dhondt, Jens</creatorcontrib><creatorcontrib>Pandelaere, Kenny</creatorcontrib><creatorcontrib>Bertels, Johny</creatorcontrib><creatorcontrib>Mertens, Roel</creatorcontrib><creatorcontrib>Klingeleers, Didier</creatorcontrib><creatorcontrib>Di Pretoro, Giustino</creatorcontrib><creatorcontrib>Remon, Jean Paul</creatorcontrib><creatorcontrib>Vervaet, Chris</creatorcontrib><creatorcontrib>De Beer, Thomas</creatorcontrib><creatorcontrib>Vanhoorne, Valérie</creatorcontrib><title>A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] In current study a holistic material characterization approach was proposed and an extensive raw material property database was developed including a wide variety of APIs and excipients with different functionalities. In total 55 different materials were characterized and described by over 100 raw material descriptors related to particle size and shape distribution, specific surface area, bulk, tapped and true density, compressibility, electrostatic charge, moisture content, hygroscopicity, permeability, flowability and wall friction. Principal component analysis (PCA) was applied to reveal similarities and dissimilarities between materials and to identify overarching properties. The developed PCA model allows to rationalize the number of critical characterization techniques in routine characterization and to identify surrogates for use during early drug product development stages when limited amounts of active pharmaceutical ingredients are available. Additionally, the developed database will be the basis to build predictive models for in silico process and formulation development based on (a selection of) property descriptors.</description><subject>Computer Simulation</subject><subject>Continuous direct compression</subject><subject>Databases, Chemical</subject><subject>Excipients - chemistry</subject><subject>Friction</subject><subject>In silico design</subject><subject>Material characterization</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Multivariate Analysis</subject><subject>Multivariate data analysis</subject><subject>Particle Size</subject><subject>Permeability</subject><subject>Pharmaceutical drug product development</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Porosity</subject><subject>Powders</subject><subject>Principal Component Analysis</subject><subject>Technology, Pharmaceutical - methods</subject><subject>Water - chemistry</subject><subject>Wettability</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u3CAQxlHVqtls-witOPbiDWNsQ05RFDV_pEi5pGeEYZyyso0DeKN9krxucXeTa9BIDNJvvo_RR8gPYBtg0JxtN247_dVh2JQM5IblguoTWYEUvOCVaD6TFeNCFjUIfkJOY9wyxpoS-FdywhmAlBxW5PWSDnOf3E4HpxPSoF_okJv86ukU_IQh7anVSbc6Ik2edtq43qUFtmF-WiA7m0Qt7rD304Bjonq0FEfd9kjdWMTMG5-B6J5G6jv6_9_a4JycyTY27OnkXyyGRcxgjBi_kS-d7iN-P95r8uf69-PVbXH_cHN3dXlfmIpDKrQAkw-00HXIy7K02NUITJayNQLzjrzmqOu6aYy0QrTARcUMYx0HlHjO1-TXQTc7P88YkxpcNNj3ekQ_R1UyeS5rybPSmtQH1AQfY8BOTcENOuwVMLVkorbqmIlaMlEsF1R57ufRYm4HtO9TbyFk4OIAYF505zCoaByOBq0LaJKy3n1g8Q-yD6RB</recordid><startdate>20181005</startdate><enddate>20181005</enddate><creator>Van Snick, Bernd</creator><creator>Dhondt, Jens</creator><creator>Pandelaere, Kenny</creator><creator>Bertels, Johny</creator><creator>Mertens, Roel</creator><creator>Klingeleers, Didier</creator><creator>Di Pretoro, Giustino</creator><creator>Remon, Jean Paul</creator><creator>Vervaet, Chris</creator><creator>De Beer, Thomas</creator><creator>Vanhoorne, Valérie</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7313-418X</orcidid><orcidid>https://orcid.org/0000-0003-4249-3408</orcidid></search><sort><creationdate>20181005</creationdate><title>A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes</title><author>Van Snick, Bernd ; Dhondt, Jens ; Pandelaere, Kenny ; Bertels, Johny ; Mertens, Roel ; Klingeleers, Didier ; Di Pretoro, Giustino ; Remon, Jean Paul ; Vervaet, Chris ; De Beer, Thomas ; Vanhoorne, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-a71cccc1b1ffe3222def5e10828bc7e883353ea5566c8d77b13740c00f31e8e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Simulation</topic><topic>Continuous direct compression</topic><topic>Databases, Chemical</topic><topic>Excipients - chemistry</topic><topic>Friction</topic><topic>In silico design</topic><topic>Material characterization</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Multivariate Analysis</topic><topic>Multivariate data analysis</topic><topic>Particle Size</topic><topic>Permeability</topic><topic>Pharmaceutical drug product development</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Porosity</topic><topic>Powders</topic><topic>Principal Component Analysis</topic><topic>Technology, Pharmaceutical - methods</topic><topic>Water - chemistry</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Snick, Bernd</creatorcontrib><creatorcontrib>Dhondt, Jens</creatorcontrib><creatorcontrib>Pandelaere, Kenny</creatorcontrib><creatorcontrib>Bertels, Johny</creatorcontrib><creatorcontrib>Mertens, Roel</creatorcontrib><creatorcontrib>Klingeleers, Didier</creatorcontrib><creatorcontrib>Di Pretoro, Giustino</creatorcontrib><creatorcontrib>Remon, Jean Paul</creatorcontrib><creatorcontrib>Vervaet, Chris</creatorcontrib><creatorcontrib>De Beer, Thomas</creatorcontrib><creatorcontrib>Vanhoorne, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Snick, Bernd</au><au>Dhondt, Jens</au><au>Pandelaere, Kenny</au><au>Bertels, Johny</au><au>Mertens, Roel</au><au>Klingeleers, Didier</au><au>Di Pretoro, Giustino</au><au>Remon, Jean Paul</au><au>Vervaet, Chris</au><au>De Beer, Thomas</au><au>Vanhoorne, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2018-10-05</date><risdate>2018</risdate><volume>549</volume><issue>1-2</issue><spage>415</spage><epage>435</epage><pages>415-435</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] In current study a holistic material characterization approach was proposed and an extensive raw material property database was developed including a wide variety of APIs and excipients with different functionalities. In total 55 different materials were characterized and described by over 100 raw material descriptors related to particle size and shape distribution, specific surface area, bulk, tapped and true density, compressibility, electrostatic charge, moisture content, hygroscopicity, permeability, flowability and wall friction. Principal component analysis (PCA) was applied to reveal similarities and dissimilarities between materials and to identify overarching properties. The developed PCA model allows to rationalize the number of critical characterization techniques in routine characterization and to identify surrogates for use during early drug product development stages when limited amounts of active pharmaceutical ingredients are available. Additionally, the developed database will be the basis to build predictive models for in silico process and formulation development based on (a selection of) property descriptors.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30118831</pmid><doi>10.1016/j.ijpharm.2018.08.014</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7313-418X</orcidid><orcidid>https://orcid.org/0000-0003-4249-3408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2018-10, Vol.549 (1-2), p.415-435
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_2089858388
source MEDLINE; Elsevier ScienceDirect Journals
subjects Computer Simulation
Continuous direct compression
Databases, Chemical
Excipients - chemistry
Friction
In silico design
Material characterization
Models, Chemical
Models, Statistical
Multivariate Analysis
Multivariate data analysis
Particle Size
Permeability
Pharmaceutical drug product development
Pharmaceutical Preparations - chemistry
Porosity
Powders
Principal Component Analysis
Technology, Pharmaceutical - methods
Water - chemistry
Wettability
title A multivariate raw material property database to facilitate drug product development and enable in-silico design of pharmaceutical dry powder processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multivariate%20raw%20material%20property%20database%20to%20facilitate%20drug%20product%20development%20and%20enable%20in-silico%20design%20of%20pharmaceutical%20dry%20powder%20processes&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Van%20Snick,%20Bernd&rft.date=2018-10-05&rft.volume=549&rft.issue=1-2&rft.spage=415&rft.epage=435&rft.pages=415-435&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2018.08.014&rft_dat=%3Cproquest_cross%3E2089858388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089858388&rft_id=info:pmid/30118831&rft_els_id=S0378517318305763&rfr_iscdi=true