Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2

Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-09, Vol.12 (9), p.8961-8969
Hauptverfasser: Chi, Zhen, Chen, Huihui, Chen, Zhuo, Zhao, Qing, Chen, Hailong, Weng, Yu-Xiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8969
container_issue 9
container_start_page 8961
container_title ACS nano
container_volume 12
creator Chi, Zhen
Chen, Huihui
Chen, Zhuo
Zhao, Qing
Chen, Hailong
Weng, Yu-Xiang
description Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosecond pump–probe spectroscopy with a detection wavelength ranging from visible to near-infrared to mid-infrared is performed on few-layer MoS2. With this method, the many-body effects, occupation effects, and phonon dynamics are clearly identified. In particular, thermalization of the MoS2 lattice via electron–phonon scattering is responsible for a redshift of the exciton resonance energy observed within tens to hundreds of picoseconds after photoexcitation, which provides a direct real-time sensor for measuring the change in lattice temperature. We find that the excess energy from the cooling of hot carriers and the formation of bound carriers is efficiently transferred to the internal phonon system within 2 ps, while that from Shockley–Read–Hall recombination (∼9 ps) is mainly dissipated from the MoS2 surfaces to external phonons.
doi_str_mv 10.1021/acsnano.8b02354
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089857227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089857227</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-baf95f43fc3b1ce00208b25960c852f148cf09fc6174c35eade980dd1d7b52193</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKdnrzkK0pmkTZsepas6mCi4gbeQpsmW0SW1SZ3-93aseHrv8X588PsAuMVohhHBD0J6K6ybsQqRmCZnYILzOI0QSz_P_3eKL8GV9zuEaMaydALqdRM6oYUPsLSq2_zCufHetCIYZ-G3EbBwfdsYu4EHE7ZwYYPqrGigsDUsf8bjfeussx4aC1cHF83NXlk_AIbXq_sg1-BCi8arm3FOwfqpXBUv0fLteVE8LiNBSBKiSuic6iTWMq6wVAgRxCpC8xRJRonGCZMa5VqmOEtkTJWoVc5QXeM6qygZGk7B3Ynbdu6rVz7wvfFSNY2wyvWeD7yc0YyQbIjen6KDNr5z_bGG5xjxo0s-uuSjy_gPlkRqBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089857227</pqid></control><display><type>article</type><title>Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2</title><source>American Chemical Society Journals</source><creator>Chi, Zhen ; Chen, Huihui ; Chen, Zhuo ; Zhao, Qing ; Chen, Hailong ; Weng, Yu-Xiang</creator><creatorcontrib>Chi, Zhen ; Chen, Huihui ; Chen, Zhuo ; Zhao, Qing ; Chen, Hailong ; Weng, Yu-Xiang</creatorcontrib><description>Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosecond pump–probe spectroscopy with a detection wavelength ranging from visible to near-infrared to mid-infrared is performed on few-layer MoS2. With this method, the many-body effects, occupation effects, and phonon dynamics are clearly identified. In particular, thermalization of the MoS2 lattice via electron–phonon scattering is responsible for a redshift of the exciton resonance energy observed within tens to hundreds of picoseconds after photoexcitation, which provides a direct real-time sensor for measuring the change in lattice temperature. We find that the excess energy from the cooling of hot carriers and the formation of bound carriers is efficiently transferred to the internal phonon system within 2 ps, while that from Shockley–Read–Hall recombination (∼9 ps) is mainly dissipated from the MoS2 surfaces to external phonons.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b02354</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-09, Vol.12 (9), p.8961-8969</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0423-2266 ; 0000-0002-0671-4974 ; 0000-0002-3456-7836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b02354$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b02354$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chi, Zhen</creatorcontrib><creatorcontrib>Chen, Huihui</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Weng, Yu-Xiang</creatorcontrib><title>Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosecond pump–probe spectroscopy with a detection wavelength ranging from visible to near-infrared to mid-infrared is performed on few-layer MoS2. With this method, the many-body effects, occupation effects, and phonon dynamics are clearly identified. In particular, thermalization of the MoS2 lattice via electron–phonon scattering is responsible for a redshift of the exciton resonance energy observed within tens to hundreds of picoseconds after photoexcitation, which provides a direct real-time sensor for measuring the change in lattice temperature. We find that the excess energy from the cooling of hot carriers and the formation of bound carriers is efficiently transferred to the internal phonon system within 2 ps, while that from Shockley–Read–Hall recombination (∼9 ps) is mainly dissipated from the MoS2 surfaces to external phonons.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKdnrzkK0pmkTZsepas6mCi4gbeQpsmW0SW1SZ3-93aseHrv8X588PsAuMVohhHBD0J6K6ybsQqRmCZnYILzOI0QSz_P_3eKL8GV9zuEaMaydALqdRM6oYUPsLSq2_zCufHetCIYZ-G3EbBwfdsYu4EHE7ZwYYPqrGigsDUsf8bjfeussx4aC1cHF83NXlk_AIbXq_sg1-BCi8arm3FOwfqpXBUv0fLteVE8LiNBSBKiSuic6iTWMq6wVAgRxCpC8xRJRonGCZMa5VqmOEtkTJWoVc5QXeM6qygZGk7B3Ynbdu6rVz7wvfFSNY2wyvWeD7yc0YyQbIjen6KDNr5z_bGG5xjxo0s-uuSjy_gPlkRqBw</recordid><startdate>20180925</startdate><enddate>20180925</enddate><creator>Chi, Zhen</creator><creator>Chen, Huihui</creator><creator>Chen, Zhuo</creator><creator>Zhao, Qing</creator><creator>Chen, Hailong</creator><creator>Weng, Yu-Xiang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid><orcidid>https://orcid.org/0000-0002-0671-4974</orcidid><orcidid>https://orcid.org/0000-0002-3456-7836</orcidid></search><sort><creationdate>20180925</creationdate><title>Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2</title><author>Chi, Zhen ; Chen, Huihui ; Chen, Zhuo ; Zhao, Qing ; Chen, Hailong ; Weng, Yu-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-baf95f43fc3b1ce00208b25960c852f148cf09fc6174c35eade980dd1d7b52193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Zhen</creatorcontrib><creatorcontrib>Chen, Huihui</creatorcontrib><creatorcontrib>Chen, Zhuo</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Weng, Yu-Xiang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Zhen</au><au>Chen, Huihui</au><au>Chen, Zhuo</au><au>Zhao, Qing</au><au>Chen, Hailong</au><au>Weng, Yu-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-09-25</date><risdate>2018</risdate><volume>12</volume><issue>9</issue><spage>8961</spage><epage>8969</epage><pages>8961-8969</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Atomically thin two-dimensional materials have emerged as a promising system for optoelectronic applications; however, the low quantum yield, mainly caused by nonradiative energy dissipation, has greatly limited practical applications. To reveal the details for nonradiative energy channels, femtosecond pump–probe spectroscopy with a detection wavelength ranging from visible to near-infrared to mid-infrared is performed on few-layer MoS2. With this method, the many-body effects, occupation effects, and phonon dynamics are clearly identified. In particular, thermalization of the MoS2 lattice via electron–phonon scattering is responsible for a redshift of the exciton resonance energy observed within tens to hundreds of picoseconds after photoexcitation, which provides a direct real-time sensor for measuring the change in lattice temperature. We find that the excess energy from the cooling of hot carriers and the formation of bound carriers is efficiently transferred to the internal phonon system within 2 ps, while that from Shockley–Read–Hall recombination (∼9 ps) is mainly dissipated from the MoS2 surfaces to external phonons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b02354</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid><orcidid>https://orcid.org/0000-0002-0671-4974</orcidid><orcidid>https://orcid.org/0000-0002-3456-7836</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-09, Vol.12 (9), p.8961-8969
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2089857227
source American Chemical Society Journals
title Ultrafast Energy Dissipation via Coupling with Internal and External Phonons in Two-Dimensional MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Energy%20Dissipation%20via%20Coupling%20with%20Internal%20and%20External%20Phonons%20in%20Two-Dimensional%20MoS2&rft.jtitle=ACS%20nano&rft.au=Chi,%20Zhen&rft.date=2018-09-25&rft.volume=12&rft.issue=9&rft.spage=8961&rft.epage=8969&rft.pages=8961-8969&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b02354&rft_dat=%3Cproquest_acs_j%3E2089857227%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089857227&rft_id=info:pmid/&rfr_iscdi=true