Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water

A critical challenge in environmental remediation is the design of adsorbents with proper pore size for the removal of organic pollutants. Three covalent organic frameworks (COFs) with different pore sizes were successfully prepared by a room-temperature solution–suspension method and used to remove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-09, Vol.10 (36), p.30265-30272
Hauptverfasser: Wang, Wei, Deng, Shubo, Ren, Lu, Li, Danyang, Wang, Wenjing, Vakili, Mohammadtaghi, Wang, Bin, Huang, Jun, Wang, Yujue, Yu, Gang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30272
container_issue 36
container_start_page 30265
container_title ACS applied materials & interfaces
container_volume 10
creator Wang, Wei
Deng, Shubo
Ren, Lu
Li, Danyang
Wang, Wenjing
Vakili, Mohammadtaghi
Wang, Bin
Huang, Jun
Wang, Yujue
Yu, Gang
description A critical challenge in environmental remediation is the design of adsorbents with proper pore size for the removal of organic pollutants. Three covalent organic frameworks (COFs) with different pore sizes were successfully prepared by a room-temperature solution–suspension method and used to remove a typical aryl-organophosphorus flame retardant [triphenyl phosphate (TPhP)] from aqueous solution. The prepared COFs showed strong acid resistance and thermal stability. The 1,3,5-triformylphloroglucinol (TFP) reacted with benzidine (BD) (COF2) and exhibited the highest sorption capacity for TPhP, followed by the reaction of TFP and 4,4″-diamino-p-terphenyl (DT) (COF3), and the reaction of TFP and p-phenylenediamine (COF1). Their adsorption equilibriums were achieved within 12 h, and COFs with a larger pore size have higher initial sorption rate but longer time to reach sorption equilibrium. According to the Langmuir fitting, the maximum sorption capacities of three COFs for TPhP were 86.1, 387.2, and 371.2 mg/g, respectively. The density functional theory calculation verified that COF1 with a small pore size prevents TPhP molecules from entering the pores, resulting in extremely low sorption capacity, whereas a relatively too large pore size (COF3) will decrease the sorption energy, which is also not conducive to the adsorption of TPhP. Moreover, the prepared COFs can selectively adsorb TPhP in the presence of coexisting compounds and had high removal of TPhP from actual municipal wastewater, showing a promising application potential for selective removal of micropollutants from water by precisely controlling the COF structure.
doi_str_mv 10.1021/acsami.8b06229
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089856311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089856311</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-5e86d43d829096a950948ddfa7ceb5a713cebc36a9cbe237367a8832c65fa1bd3</originalsourceid><addsrcrecordid>eNp1kUtLLDEQRoMovrcuL1nKhR7z6O5JlsPgqCAIPnDZVCcVbe3uzE26vfgv_MlmnNGdi1AFdepA5SPkhLMJZ4KfgYnQNRNVs1IIvUX2uc7zTIlCbP_0eb5HDmJ8YayUghW7ZE8yznPN5T75uBugbpHO_Ru02A_0JjxB3xi6CNDhfx9eI4VIz51rTLOaz2z0oU5dpM4Hetk8PVPoLb3DFs3QvCG9xW4lo96lAZ2F9zb7kvrls4_phTHSRZvsiRwgWEhWF3xHH2HAcER2HLQRjzf1kDwszu_nl9n1zcXVfHadgdTlkBWoSptLq4RmugRdMJ0rax1MDdYFTLlM1cg0MTUKOZXlFJSSwpSFA15beUhO195l8P9GjEPVNdFg20KPfoyVYEqropScJ3SyRk3wMQZ01TI0HYT3irNqlUK1TqHapJAW_mzcY92h_cG_vz0Bf9dAWqxe_Bj6dOpvtk_iopRt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089856311</pqid></control><display><type>article</type><title>Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water</title><source>ACS Publications</source><creator>Wang, Wei ; Deng, Shubo ; Ren, Lu ; Li, Danyang ; Wang, Wenjing ; Vakili, Mohammadtaghi ; Wang, Bin ; Huang, Jun ; Wang, Yujue ; Yu, Gang</creator><creatorcontrib>Wang, Wei ; Deng, Shubo ; Ren, Lu ; Li, Danyang ; Wang, Wenjing ; Vakili, Mohammadtaghi ; Wang, Bin ; Huang, Jun ; Wang, Yujue ; Yu, Gang</creatorcontrib><description>A critical challenge in environmental remediation is the design of adsorbents with proper pore size for the removal of organic pollutants. Three covalent organic frameworks (COFs) with different pore sizes were successfully prepared by a room-temperature solution–suspension method and used to remove a typical aryl-organophosphorus flame retardant [triphenyl phosphate (TPhP)] from aqueous solution. The prepared COFs showed strong acid resistance and thermal stability. The 1,3,5-triformylphloroglucinol (TFP) reacted with benzidine (BD) (COF2) and exhibited the highest sorption capacity for TPhP, followed by the reaction of TFP and 4,4″-diamino-p-terphenyl (DT) (COF3), and the reaction of TFP and p-phenylenediamine (COF1). Their adsorption equilibriums were achieved within 12 h, and COFs with a larger pore size have higher initial sorption rate but longer time to reach sorption equilibrium. According to the Langmuir fitting, the maximum sorption capacities of three COFs for TPhP were 86.1, 387.2, and 371.2 mg/g, respectively. The density functional theory calculation verified that COF1 with a small pore size prevents TPhP molecules from entering the pores, resulting in extremely low sorption capacity, whereas a relatively too large pore size (COF3) will decrease the sorption energy, which is also not conducive to the adsorption of TPhP. Moreover, the prepared COFs can selectively adsorb TPhP in the presence of coexisting compounds and had high removal of TPhP from actual municipal wastewater, showing a promising application potential for selective removal of micropollutants from water by precisely controlling the COF structure.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b06229</identifier><identifier>PMID: 30114913</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-09, Vol.10 (36), p.30265-30272</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-5e86d43d829096a950948ddfa7ceb5a713cebc36a9cbe237367a8832c65fa1bd3</citedby><cites>FETCH-LOGICAL-a396t-5e86d43d829096a950948ddfa7ceb5a713cebc36a9cbe237367a8832c65fa1bd3</cites><orcidid>0000-0003-2211-006X ; 0000-0001-9207-8953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b06229$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b06229$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30114913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Deng, Shubo</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Wang, Wenjing</creatorcontrib><creatorcontrib>Vakili, Mohammadtaghi</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Wang, Yujue</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><title>Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A critical challenge in environmental remediation is the design of adsorbents with proper pore size for the removal of organic pollutants. Three covalent organic frameworks (COFs) with different pore sizes were successfully prepared by a room-temperature solution–suspension method and used to remove a typical aryl-organophosphorus flame retardant [triphenyl phosphate (TPhP)] from aqueous solution. The prepared COFs showed strong acid resistance and thermal stability. The 1,3,5-triformylphloroglucinol (TFP) reacted with benzidine (BD) (COF2) and exhibited the highest sorption capacity for TPhP, followed by the reaction of TFP and 4,4″-diamino-p-terphenyl (DT) (COF3), and the reaction of TFP and p-phenylenediamine (COF1). Their adsorption equilibriums were achieved within 12 h, and COFs with a larger pore size have higher initial sorption rate but longer time to reach sorption equilibrium. According to the Langmuir fitting, the maximum sorption capacities of three COFs for TPhP were 86.1, 387.2, and 371.2 mg/g, respectively. The density functional theory calculation verified that COF1 with a small pore size prevents TPhP molecules from entering the pores, resulting in extremely low sorption capacity, whereas a relatively too large pore size (COF3) will decrease the sorption energy, which is also not conducive to the adsorption of TPhP. Moreover, the prepared COFs can selectively adsorb TPhP in the presence of coexisting compounds and had high removal of TPhP from actual municipal wastewater, showing a promising application potential for selective removal of micropollutants from water by precisely controlling the COF structure.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLLDEQRoMovrcuL1nKhR7z6O5JlsPgqCAIPnDZVCcVbe3uzE26vfgv_MlmnNGdi1AFdepA5SPkhLMJZ4KfgYnQNRNVs1IIvUX2uc7zTIlCbP_0eb5HDmJ8YayUghW7ZE8yznPN5T75uBugbpHO_Ru02A_0JjxB3xi6CNDhfx9eI4VIz51rTLOaz2z0oU5dpM4Hetk8PVPoLb3DFs3QvCG9xW4lo96lAZ2F9zb7kvrls4_phTHSRZvsiRwgWEhWF3xHH2HAcER2HLQRjzf1kDwszu_nl9n1zcXVfHadgdTlkBWoSptLq4RmugRdMJ0rax1MDdYFTLlM1cg0MTUKOZXlFJSSwpSFA15beUhO195l8P9GjEPVNdFg20KPfoyVYEqropScJ3SyRk3wMQZ01TI0HYT3irNqlUK1TqHapJAW_mzcY92h_cG_vz0Bf9dAWqxe_Bj6dOpvtk_iopRt</recordid><startdate>20180912</startdate><enddate>20180912</enddate><creator>Wang, Wei</creator><creator>Deng, Shubo</creator><creator>Ren, Lu</creator><creator>Li, Danyang</creator><creator>Wang, Wenjing</creator><creator>Vakili, Mohammadtaghi</creator><creator>Wang, Bin</creator><creator>Huang, Jun</creator><creator>Wang, Yujue</creator><creator>Yu, Gang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2211-006X</orcidid><orcidid>https://orcid.org/0000-0001-9207-8953</orcidid></search><sort><creationdate>20180912</creationdate><title>Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water</title><author>Wang, Wei ; Deng, Shubo ; Ren, Lu ; Li, Danyang ; Wang, Wenjing ; Vakili, Mohammadtaghi ; Wang, Bin ; Huang, Jun ; Wang, Yujue ; Yu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-5e86d43d829096a950948ddfa7ceb5a713cebc36a9cbe237367a8832c65fa1bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Deng, Shubo</creatorcontrib><creatorcontrib>Ren, Lu</creatorcontrib><creatorcontrib>Li, Danyang</creatorcontrib><creatorcontrib>Wang, Wenjing</creatorcontrib><creatorcontrib>Vakili, Mohammadtaghi</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Wang, Yujue</creatorcontrib><creatorcontrib>Yu, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Deng, Shubo</au><au>Ren, Lu</au><au>Li, Danyang</au><au>Wang, Wenjing</au><au>Vakili, Mohammadtaghi</au><au>Wang, Bin</au><au>Huang, Jun</au><au>Wang, Yujue</au><au>Yu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-09-12</date><risdate>2018</risdate><volume>10</volume><issue>36</issue><spage>30265</spage><epage>30272</epage><pages>30265-30272</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A critical challenge in environmental remediation is the design of adsorbents with proper pore size for the removal of organic pollutants. Three covalent organic frameworks (COFs) with different pore sizes were successfully prepared by a room-temperature solution–suspension method and used to remove a typical aryl-organophosphorus flame retardant [triphenyl phosphate (TPhP)] from aqueous solution. The prepared COFs showed strong acid resistance and thermal stability. The 1,3,5-triformylphloroglucinol (TFP) reacted with benzidine (BD) (COF2) and exhibited the highest sorption capacity for TPhP, followed by the reaction of TFP and 4,4″-diamino-p-terphenyl (DT) (COF3), and the reaction of TFP and p-phenylenediamine (COF1). Their adsorption equilibriums were achieved within 12 h, and COFs with a larger pore size have higher initial sorption rate but longer time to reach sorption equilibrium. According to the Langmuir fitting, the maximum sorption capacities of three COFs for TPhP were 86.1, 387.2, and 371.2 mg/g, respectively. The density functional theory calculation verified that COF1 with a small pore size prevents TPhP molecules from entering the pores, resulting in extremely low sorption capacity, whereas a relatively too large pore size (COF3) will decrease the sorption energy, which is also not conducive to the adsorption of TPhP. Moreover, the prepared COFs can selectively adsorb TPhP in the presence of coexisting compounds and had high removal of TPhP from actual municipal wastewater, showing a promising application potential for selective removal of micropollutants from water by precisely controlling the COF structure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30114913</pmid><doi>10.1021/acsami.8b06229</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2211-006X</orcidid><orcidid>https://orcid.org/0000-0001-9207-8953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-09, Vol.10 (36), p.30265-30272
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2089856311
source ACS Publications
title Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Covalent%20Organic%20Frameworks%20as%20Efficient%20Adsorbents%20for%20High%20and%20Selective%20Removal%20of%20an%20Aryl-Organophosphorus%20Flame%20Retardant%20from%20Water&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Wei&rft.date=2018-09-12&rft.volume=10&rft.issue=36&rft.spage=30265&rft.epage=30272&rft.pages=30265-30272&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b06229&rft_dat=%3Cproquest_cross%3E2089856311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089856311&rft_id=info:pmid/30114913&rfr_iscdi=true