Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering
In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-s...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2018-07, Vol.57 (20), p.5800-5805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5805 |
---|---|
container_issue | 20 |
container_start_page | 5800 |
container_title | Applied optics (2004) |
container_volume | 57 |
creator | Tavousi, Alireza Mansouri-Birjandi, Mohammad Ali Janfaza, Morteza |
description | In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs. |
doi_str_mv | 10.1364/AO.57.005800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089850524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093497527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</originalsourceid><addsrcrecordid>eNpdkM1LwzAYxoMobk5vnqXgxYOd-WiW5jiGXzDoxYG3kjRvZ0aX1KQ9-N8b2fTg6X14-fHw8EPomuA5YYviYVnNuZhjzEuMT9CUEs5zRhb8FE1TlDmh5fsEXcS4w5jxQopzNGGYkBJzMkWbqh88dNAMwTvbZKrvO9uowXqX-TbbBtV_gIPMKeeD1Tq9Wx-yvTW5dW1QAUymlTO9ijFrbTdAsG57ic5a1UW4Ot4Z2jw9vq1e8nX1_LparvOGETnkCjgxQkkhJBVaSA2aGpA0TWvYQmG6KIUpJaNtIZuWU6MwaEmYwYJqKIHN0N2htw_-c4Q41HsbG-g65cCPsaa4lCXHnBYJvf2H7vwYXFqXKMmSF05Fou4PVBN8jAHaug92r8JXTXD9o7teVjUX9UF3wm-OpaPeg_mDf_2yb53YenQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093497527</pqid></control><display><type>article</type><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</creator><creatorcontrib>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</creatorcontrib><description>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.57.005800</identifier><identifier>PMID: 30118051</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Bandpass filters ; Carrier density ; Charge density ; Current carriers ; Electric potential ; Finite difference time domain method ; Graphene ; Infrared filters ; Nanoribbons ; Optoelectronics ; Silicon dioxide ; Substrates ; Surface charge ; Tunable filters ; Wavelengths</subject><ispartof>Applied optics (2004), 2018-07, Vol.57 (20), p.5800-5805</ispartof><rights>Copyright Optical Society of America Jul 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</citedby><cites>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</cites><orcidid>0000-0002-1948-3204 ; 0000-0002-8378-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tavousi, Alireza</creatorcontrib><creatorcontrib>Mansouri-Birjandi, Mohammad Ali</creatorcontrib><creatorcontrib>Janfaza, Morteza</creatorcontrib><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</description><subject>Bandpass filters</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Current carriers</subject><subject>Electric potential</subject><subject>Finite difference time domain method</subject><subject>Graphene</subject><subject>Infrared filters</subject><subject>Nanoribbons</subject><subject>Optoelectronics</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Surface charge</subject><subject>Tunable filters</subject><subject>Wavelengths</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYxoMobk5vnqXgxYOd-WiW5jiGXzDoxYG3kjRvZ0aX1KQ9-N8b2fTg6X14-fHw8EPomuA5YYviYVnNuZhjzEuMT9CUEs5zRhb8FE1TlDmh5fsEXcS4w5jxQopzNGGYkBJzMkWbqh88dNAMwTvbZKrvO9uowXqX-TbbBtV_gIPMKeeD1Tq9Wx-yvTW5dW1QAUymlTO9ijFrbTdAsG57ic5a1UW4Ot4Z2jw9vq1e8nX1_LparvOGETnkCjgxQkkhJBVaSA2aGpA0TWvYQmG6KIUpJaNtIZuWU6MwaEmYwYJqKIHN0N2htw_-c4Q41HsbG-g65cCPsaa4lCXHnBYJvf2H7vwYXFqXKMmSF05Fou4PVBN8jAHaug92r8JXTXD9o7teVjUX9UF3wm-OpaPeg_mDf_2yb53YenQ</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Tavousi, Alireza</creator><creator>Mansouri-Birjandi, Mohammad Ali</creator><creator>Janfaza, Morteza</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1948-3204</orcidid><orcidid>https://orcid.org/0000-0002-8378-364X</orcidid></search><sort><creationdate>20180710</creationdate><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><author>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandpass filters</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Current carriers</topic><topic>Electric potential</topic><topic>Finite difference time domain method</topic><topic>Graphene</topic><topic>Infrared filters</topic><topic>Nanoribbons</topic><topic>Optoelectronics</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Surface charge</topic><topic>Tunable filters</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavousi, Alireza</creatorcontrib><creatorcontrib>Mansouri-Birjandi, Mohammad Ali</creatorcontrib><creatorcontrib>Janfaza, Morteza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavousi, Alireza</au><au>Mansouri-Birjandi, Mohammad Ali</au><au>Janfaza, Morteza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2018-07-10</date><risdate>2018</risdate><volume>57</volume><issue>20</issue><spage>5800</spage><epage>5805</epage><pages>5800-5805</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>30118051</pmid><doi>10.1364/AO.57.005800</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1948-3204</orcidid><orcidid>https://orcid.org/0000-0002-8378-364X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2018-07, Vol.57 (20), p.5800-5805 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2089850524 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Bandpass filters Carrier density Charge density Current carriers Electric potential Finite difference time domain method Graphene Infrared filters Nanoribbons Optoelectronics Silicon dioxide Substrates Surface charge Tunable filters Wavelengths |
title | Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20application%20of%20graphene%20nanoribbon%20for%20mid-infrared%20bandpass%20filtering&rft.jtitle=Applied%20optics%20(2004)&rft.au=Tavousi,%20Alireza&rft.date=2018-07-10&rft.volume=57&rft.issue=20&rft.spage=5800&rft.epage=5805&rft.pages=5800-5805&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.57.005800&rft_dat=%3Cproquest_cross%3E2093497527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093497527&rft_id=info:pmid/30118051&rfr_iscdi=true |