Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering

In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2018-07, Vol.57 (20), p.5800-5805
Hauptverfasser: Tavousi, Alireza, Mansouri-Birjandi, Mohammad Ali, Janfaza, Morteza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5805
container_issue 20
container_start_page 5800
container_title Applied optics (2004)
container_volume 57
creator Tavousi, Alireza
Mansouri-Birjandi, Mohammad Ali
Janfaza, Morteza
description In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.
doi_str_mv 10.1364/AO.57.005800
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2089850524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093497527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</originalsourceid><addsrcrecordid>eNpdkM1LwzAYxoMobk5vnqXgxYOd-WiW5jiGXzDoxYG3kjRvZ0aX1KQ9-N8b2fTg6X14-fHw8EPomuA5YYviYVnNuZhjzEuMT9CUEs5zRhb8FE1TlDmh5fsEXcS4w5jxQopzNGGYkBJzMkWbqh88dNAMwTvbZKrvO9uowXqX-TbbBtV_gIPMKeeD1Tq9Wx-yvTW5dW1QAUymlTO9ijFrbTdAsG57ic5a1UW4Ot4Z2jw9vq1e8nX1_LparvOGETnkCjgxQkkhJBVaSA2aGpA0TWvYQmG6KIUpJaNtIZuWU6MwaEmYwYJqKIHN0N2htw_-c4Q41HsbG-g65cCPsaa4lCXHnBYJvf2H7vwYXFqXKMmSF05Fou4PVBN8jAHaug92r8JXTXD9o7teVjUX9UF3wm-OpaPeg_mDf_2yb53YenQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093497527</pqid></control><display><type>article</type><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</creator><creatorcontrib>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</creatorcontrib><description>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.57.005800</identifier><identifier>PMID: 30118051</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Bandpass filters ; Carrier density ; Charge density ; Current carriers ; Electric potential ; Finite difference time domain method ; Graphene ; Infrared filters ; Nanoribbons ; Optoelectronics ; Silicon dioxide ; Substrates ; Surface charge ; Tunable filters ; Wavelengths</subject><ispartof>Applied optics (2004), 2018-07, Vol.57 (20), p.5800-5805</ispartof><rights>Copyright Optical Society of America Jul 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</citedby><cites>FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</cites><orcidid>0000-0002-1948-3204 ; 0000-0002-8378-364X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tavousi, Alireza</creatorcontrib><creatorcontrib>Mansouri-Birjandi, Mohammad Ali</creatorcontrib><creatorcontrib>Janfaza, Morteza</creatorcontrib><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</description><subject>Bandpass filters</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Current carriers</subject><subject>Electric potential</subject><subject>Finite difference time domain method</subject><subject>Graphene</subject><subject>Infrared filters</subject><subject>Nanoribbons</subject><subject>Optoelectronics</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Surface charge</subject><subject>Tunable filters</subject><subject>Wavelengths</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYxoMobk5vnqXgxYOd-WiW5jiGXzDoxYG3kjRvZ0aX1KQ9-N8b2fTg6X14-fHw8EPomuA5YYviYVnNuZhjzEuMT9CUEs5zRhb8FE1TlDmh5fsEXcS4w5jxQopzNGGYkBJzMkWbqh88dNAMwTvbZKrvO9uowXqX-TbbBtV_gIPMKeeD1Tq9Wx-yvTW5dW1QAUymlTO9ijFrbTdAsG57ic5a1UW4Ot4Z2jw9vq1e8nX1_LparvOGETnkCjgxQkkhJBVaSA2aGpA0TWvYQmG6KIUpJaNtIZuWU6MwaEmYwYJqKIHN0N2htw_-c4Q41HsbG-g65cCPsaa4lCXHnBYJvf2H7vwYXFqXKMmSF05Fou4PVBN8jAHaug92r8JXTXD9o7teVjUX9UF3wm-OpaPeg_mDf_2yb53YenQ</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Tavousi, Alireza</creator><creator>Mansouri-Birjandi, Mohammad Ali</creator><creator>Janfaza, Morteza</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1948-3204</orcidid><orcidid>https://orcid.org/0000-0002-8378-364X</orcidid></search><sort><creationdate>20180710</creationdate><title>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</title><author>Tavousi, Alireza ; Mansouri-Birjandi, Mohammad Ali ; Janfaza, Morteza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ae51d7a977927b79beb2de92805c36a02687d8932f49cf52da0eb913d072be8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandpass filters</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Current carriers</topic><topic>Electric potential</topic><topic>Finite difference time domain method</topic><topic>Graphene</topic><topic>Infrared filters</topic><topic>Nanoribbons</topic><topic>Optoelectronics</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Surface charge</topic><topic>Tunable filters</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tavousi, Alireza</creatorcontrib><creatorcontrib>Mansouri-Birjandi, Mohammad Ali</creatorcontrib><creatorcontrib>Janfaza, Morteza</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tavousi, Alireza</au><au>Mansouri-Birjandi, Mohammad Ali</au><au>Janfaza, Morteza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2018-07-10</date><risdate>2018</risdate><volume>57</volume><issue>20</issue><spage>5800</spage><epage>5805</epage><pages>5800-5805</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this study, an ultra-compact optoelectronic bandpass filter is proposed. A single piece of graphene nanoribbon (GNR) is placed between two input-output GNRs to form a Fabry-Perot-like cavity. The GNR, as a mid-infrared surface waveguide, enhances the compatibility with complementary metal oxide-semiconductor processing technologies. The transmission characteristics of the bandpass filter are tuned by the modulation of surface charge carrier density simply through changing the bias voltage applied on the GNR cavity, and thus a tunable filter at room temperature is achieved. It is found that increasing the gate voltage and the silica substrate thickness or middle GNR width alters the max peak of transmission spectra of the filter toward smaller wavelengths. In contrast, increasing the middle GNR length redshifts max peak of the filter toward longer wavelengths. The finite different time domain (FDTD) inhouse code has been employed to verify the designs.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>30118051</pmid><doi>10.1364/AO.57.005800</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1948-3204</orcidid><orcidid>https://orcid.org/0000-0002-8378-364X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2018-07, Vol.57 (20), p.5800-5805
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2089850524
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Bandpass filters
Carrier density
Charge density
Current carriers
Electric potential
Finite difference time domain method
Graphene
Infrared filters
Nanoribbons
Optoelectronics
Silicon dioxide
Substrates
Surface charge
Tunable filters
Wavelengths
title Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20application%20of%20graphene%20nanoribbon%20for%20mid-infrared%20bandpass%20filtering&rft.jtitle=Applied%20optics%20(2004)&rft.au=Tavousi,%20Alireza&rft.date=2018-07-10&rft.volume=57&rft.issue=20&rft.spage=5800&rft.epage=5805&rft.pages=5800-5805&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.57.005800&rft_dat=%3Cproquest_cross%3E2093497527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093497527&rft_id=info:pmid/30118051&rfr_iscdi=true