ODE solution to the characteristic form of the Saint-Venant equations

An ordinary differential equation algorithm was formulated to approximate the solution to the characteristic form of the Saint-Venant equations for one-dimensional, gradually varied, unsteady open-channel flow in prismatic irrigation canals. The algorithm was applied by developing a network of chara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Irrigation science 2008-03, Vol.26 (3), p.213-222
Hauptverfasser: Chun, S. J, Merkley, G. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 3
container_start_page 213
container_title Irrigation science
container_volume 26
creator Chun, S. J
Merkley, G. P
description An ordinary differential equation algorithm was formulated to approximate the solution to the characteristic form of the Saint-Venant equations for one-dimensional, gradually varied, unsteady open-channel flow in prismatic irrigation canals. The algorithm was applied by developing a network of characteristics using difference equations for randomly spaced intervals in the x - t (space-time) plane. Consistency, convergence and numerical stability of the equations are demonstrated, and a method to estimate the error of the predictor-corrector scheme is proposed. A mathematical model was developed to test the algorithm using a hypothetical case of unsteady flow, and it was compared to the results from two other mathematical simulation models, providing a high degree of agreement.
doi_str_mv 10.1007/s00271-007-0087-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20897973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20897973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9f64492d784635d5f8a635685add4806f55a85d60a53a2bce421b50211360d653</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wJWDC3ejL9-ZpdT6AYUuat2GdCbTTmknbZJZ-O_NOILgwkV4D945l3ARusZwjwHkQwAgEudpTU_JXJ6gEWaU5Jji4hSNgDKSS6zUOboIYQuApVBshKbzp2kW3K6LjWuz6LK4sVm5Md6U0fomxKbMauf3mau_TwvTtDH_sK1pY2aPnem9cInOarML9upnjtHyefo-ec1n85e3yeMsL6mEmBe1YKwglVRMUF7xWpk0heKmqpgCUXNuFK8EGE4NWZWWEbziQDCmAirB6RjdDbkH746dDVHvm1Da3c601nVBE1CFLCRN4O0fcOs636a_JYZJDkXRp-EBKr0LwdtaH3yzN_5TY9B9q3poVfdr36qWySGDExLbrq3_Df5Puhmk2jht1qlWvVwQwDTdBeZC0C_4d4D1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204750995</pqid></control><display><type>article</type><title>ODE solution to the characteristic form of the Saint-Venant equations</title><source>SpringerLink Journals</source><creator>Chun, S. J ; Merkley, G. P</creator><creatorcontrib>Chun, S. J ; Merkley, G. P</creatorcontrib><description>An ordinary differential equation algorithm was formulated to approximate the solution to the characteristic form of the Saint-Venant equations for one-dimensional, gradually varied, unsteady open-channel flow in prismatic irrigation canals. The algorithm was applied by developing a network of characteristics using difference equations for randomly spaced intervals in the x - t (space-time) plane. Consistency, convergence and numerical stability of the equations are demonstrated, and a method to estimate the error of the predictor-corrector scheme is proposed. A mathematical model was developed to test the algorithm using a hypothetical case of unsteady flow, and it was compared to the results from two other mathematical simulation models, providing a high degree of agreement.</description><identifier>ISSN: 0342-7188</identifier><identifier>EISSN: 1432-1319</identifier><identifier>DOI: 10.1007/s00271-007-0087-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agriculture ; Algorithms ; Aquatic Pollution ; Biomedical and Life Sciences ; Climate Change ; Environment ; Geological engineering ; Irrigation ; Irrigation canals ; Life Sciences ; Mathematical models ; Open channel flow ; Ordinary differential equations ; Original Paper ; Sustainable Development ; Unsteady flow ; Waste Water Technology ; Water Industry/Water Technologies ; Water Management ; Water Pollution Control</subject><ispartof>Irrigation science, 2008-03, Vol.26 (3), p.213-222</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-9f64492d784635d5f8a635685add4806f55a85d60a53a2bce421b50211360d653</citedby><cites>FETCH-LOGICAL-c370t-9f64492d784635d5f8a635685add4806f55a85d60a53a2bce421b50211360d653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00271-007-0087-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00271-007-0087-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chun, S. J</creatorcontrib><creatorcontrib>Merkley, G. P</creatorcontrib><title>ODE solution to the characteristic form of the Saint-Venant equations</title><title>Irrigation science</title><addtitle>Irrig Sci</addtitle><description>An ordinary differential equation algorithm was formulated to approximate the solution to the characteristic form of the Saint-Venant equations for one-dimensional, gradually varied, unsteady open-channel flow in prismatic irrigation canals. The algorithm was applied by developing a network of characteristics using difference equations for randomly spaced intervals in the x - t (space-time) plane. Consistency, convergence and numerical stability of the equations are demonstrated, and a method to estimate the error of the predictor-corrector scheme is proposed. A mathematical model was developed to test the algorithm using a hypothetical case of unsteady flow, and it was compared to the results from two other mathematical simulation models, providing a high degree of agreement.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change</subject><subject>Environment</subject><subject>Geological engineering</subject><subject>Irrigation</subject><subject>Irrigation canals</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Open channel flow</subject><subject>Ordinary differential equations</subject><subject>Original Paper</subject><subject>Sustainable Development</subject><subject>Unsteady flow</subject><subject>Waste Water Technology</subject><subject>Water Industry/Water Technologies</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0342-7188</issn><issn>1432-1319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKs_wJWDC3ejL9-ZpdT6AYUuat2GdCbTTmknbZJZ-O_NOILgwkV4D945l3ARusZwjwHkQwAgEudpTU_JXJ6gEWaU5Jji4hSNgDKSS6zUOboIYQuApVBshKbzp2kW3K6LjWuz6LK4sVm5Md6U0fomxKbMauf3mau_TwvTtDH_sK1pY2aPnem9cInOarML9upnjtHyefo-ec1n85e3yeMsL6mEmBe1YKwglVRMUF7xWpk0heKmqpgCUXNuFK8EGE4NWZWWEbziQDCmAirB6RjdDbkH746dDVHvm1Da3c601nVBE1CFLCRN4O0fcOs636a_JYZJDkXRp-EBKr0LwdtaH3yzN_5TY9B9q3poVfdr36qWySGDExLbrq3_Df5Puhmk2jht1qlWvVwQwDTdBeZC0C_4d4D1</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Chun, S. J</creator><creator>Merkley, G. P</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20080301</creationdate><title>ODE solution to the characteristic form of the Saint-Venant equations</title><author>Chun, S. J ; Merkley, G. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9f64492d784635d5f8a635685add4806f55a85d60a53a2bce421b50211360d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change</topic><topic>Environment</topic><topic>Geological engineering</topic><topic>Irrigation</topic><topic>Irrigation canals</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Open channel flow</topic><topic>Ordinary differential equations</topic><topic>Original Paper</topic><topic>Sustainable Development</topic><topic>Unsteady flow</topic><topic>Waste Water Technology</topic><topic>Water Industry/Water Technologies</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, S. J</creatorcontrib><creatorcontrib>Merkley, G. P</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Irrigation science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, S. J</au><au>Merkley, G. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ODE solution to the characteristic form of the Saint-Venant equations</atitle><jtitle>Irrigation science</jtitle><stitle>Irrig Sci</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>26</volume><issue>3</issue><spage>213</spage><epage>222</epage><pages>213-222</pages><issn>0342-7188</issn><eissn>1432-1319</eissn><abstract>An ordinary differential equation algorithm was formulated to approximate the solution to the characteristic form of the Saint-Venant equations for one-dimensional, gradually varied, unsteady open-channel flow in prismatic irrigation canals. The algorithm was applied by developing a network of characteristics using difference equations for randomly spaced intervals in the x - t (space-time) plane. Consistency, convergence and numerical stability of the equations are demonstrated, and a method to estimate the error of the predictor-corrector scheme is proposed. A mathematical model was developed to test the algorithm using a hypothetical case of unsteady flow, and it was compared to the results from two other mathematical simulation models, providing a high degree of agreement.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s00271-007-0087-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-7188
ispartof Irrigation science, 2008-03, Vol.26 (3), p.213-222
issn 0342-7188
1432-1319
language eng
recordid cdi_proquest_miscellaneous_20897973
source SpringerLink Journals
subjects Agriculture
Algorithms
Aquatic Pollution
Biomedical and Life Sciences
Climate Change
Environment
Geological engineering
Irrigation
Irrigation canals
Life Sciences
Mathematical models
Open channel flow
Ordinary differential equations
Original Paper
Sustainable Development
Unsteady flow
Waste Water Technology
Water Industry/Water Technologies
Water Management
Water Pollution Control
title ODE solution to the characteristic form of the Saint-Venant equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ODE%20solution%20to%20the%20characteristic%20form%20of%20the%20Saint-Venant%20equations&rft.jtitle=Irrigation%20science&rft.au=Chun,%20S.%20J&rft.date=2008-03-01&rft.volume=26&rft.issue=3&rft.spage=213&rft.epage=222&rft.pages=213-222&rft.issn=0342-7188&rft.eissn=1432-1319&rft_id=info:doi/10.1007/s00271-007-0087-7&rft_dat=%3Cproquest_cross%3E20897973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204750995&rft_id=info:pmid/&rfr_iscdi=true