Evolution of near-ground optical turbulence over concrete runway throughout multiple days in summer and winter

Experimental data are presented that demonstrate the evolution of the anisotropy/isotropy of atmospheric statistics throughout the course of four days (two winter, two summer) near the ground over a concrete runway in Florida. In late January and early February of 2017, a 532 nm near-plane-wave beam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2018-08, Vol.35 (8), p.1393-1400
Hauptverfasser: Beason, Melissa, Coffaro, Joseph, Smith, Christopher, Spychalsky, Jonathon, Belichki, Sara, Titus, Franklin, Sanzone, Frank, Berry, Bruce, Crabbs, Robert, Andrews, Larry, Phillips, Ronald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental data are presented that demonstrate the evolution of the anisotropy/isotropy of atmospheric statistics throughout the course of four days (two winter, two summer) near the ground over a concrete runway in Florida. In late January and early February of 2017, a 532 nm near-plane-wave beam was propagated 1 and 2 km at a height of 2 m above the runway, and irradiance fluctuations were captured on a CCD array. In August of 2017, a 532 nm Gaussian beam was propagated 100 m at a height of near 2 m, and fluctuation data were captured on a CCD array. Winter data were processed to calculate the covariance of intensity and summer data processed to calculate the scintillation index. The resulting contours indicated a consistent pattern of anisotropy early in the day, evolving into isotropy midday, and returning to anisotropy in late afternoon. Accompanying atmospheric and wind data are presented throughout the measurement days.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.35.001393