On the Role of Snow Cover in Depressing Air Temperature
This study empirically examines the role of snow depth on the depression of air temperature after controlling for effect of temperature changes above the boundary layer. In addition, this study examines the role of cloud cover, solar elevation angle, and maximum snow-covered albedo on the temperatur...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology (1988) 2008-07, Vol.47 (7), p.2008-2022 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2022 |
---|---|
container_issue | 7 |
container_start_page | 2008 |
container_title | Journal of applied meteorology (1988) |
container_volume | 47 |
creator | Mote, Thomas L. |
description | This study empirically examines the role of snow depth on the depression of air temperature after controlling for effect of temperature changes above the boundary layer. In addition, this study examines the role of cloud cover, solar elevation angle, and maximum snow-covered albedo on the temperature depression due to snow cover. The work uses a new dataset of daily, gridded snow depth, snowfall, and maximum and minimum temperatures for North America from 1960 to 2000 in conjunction with 850-hPa temperature data for the same period from the NCEP–NCAR reanalysis, version 1. The 850-hPa temperatures are used as a control to remove the effect of temperature changes above the boundary layer on surface air temperatures. Findings from an analysis of variance demonstrate that snow cover can result in daily maximum (minimum) temperature depressions on average of 4.5°C (2.6°C) for snow depths greater than 10 cm over the grasslands of central North America, but temperature depressions average only 1.2°C (1.1°C) overall. The temperature depression of snow cover is shown to be reduced by increased cloud cover and decreased maximum albedo, which is indicative of denser forest cover. The role of snow melting on temperature depression is further explored by comparing days with maximum temperatures above or below freezing. |
doi_str_mv | 10.1175/2007JAMC1823.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20892239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26172715</jstor_id><sourcerecordid>26172715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-65c884c1b097acd246069e4f20dc29c466f2a94b1303af0d845f38e5668bd6383</originalsourceid><addsrcrecordid>eNqNkUtLA0EQhBdR8Hn1JgyK3hJ7et7HEN8ogsbzMpnM6obNTpzZKP57NyREEURP3dBfVVNUlu1T6FKqxCkCqJveXZ9qZF26lm1RIXRHc4brqx35Zrad0hiAc6XEVqbua9K8ePIQKk9CQR7r8E764c1HUtbkzE-jT6msn0mvjGTgJ1MfbTOLfjfbKGyV_N5y7mRPF-eD_lXn9v7yut-77TiuTNORwmnNHR2CUdaNkEuQxvMCYeTQOC5lgdbwIWXAbAEjzUXBtBdS6uFIMs12spOF7zSG15lPTT4pk_NVZWsfZilnXFA0beK_QARtEJn5BygFKCZa8OgHOA6zWLdpc9SIGiiY-d_DX6k2LgMjaAt1F5CLIaXoi3way4mNHzmFfF5e_r28fC44Xrra5GxVRFu7Mq1UCNwYKeffDxbcODUhft0lVaioYJ9fqp4d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224630951</pqid></control><display><type>article</type><title>On the Role of Snow Cover in Depressing Air Temperature</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mote, Thomas L.</creator><creatorcontrib>Mote, Thomas L.</creatorcontrib><description>This study empirically examines the role of snow depth on the depression of air temperature after controlling for effect of temperature changes above the boundary layer. In addition, this study examines the role of cloud cover, solar elevation angle, and maximum snow-covered albedo on the temperature depression due to snow cover. The work uses a new dataset of daily, gridded snow depth, snowfall, and maximum and minimum temperatures for North America from 1960 to 2000 in conjunction with 850-hPa temperature data for the same period from the NCEP–NCAR reanalysis, version 1. The 850-hPa temperatures are used as a control to remove the effect of temperature changes above the boundary layer on surface air temperatures. Findings from an analysis of variance demonstrate that snow cover can result in daily maximum (minimum) temperature depressions on average of 4.5°C (2.6°C) for snow depths greater than 10 cm over the grasslands of central North America, but temperature depressions average only 1.2°C (1.1°C) overall. The temperature depression of snow cover is shown to be reduced by increased cloud cover and decreased maximum albedo, which is indicative of denser forest cover. The role of snow melting on temperature depression is further explored by comparing days with maximum temperatures above or below freezing.</description><identifier>ISSN: 1558-8424</identifier><identifier>ISSN: 0894-8763</identifier><identifier>EISSN: 1558-8432</identifier><identifier>EISSN: 1520-0450</identifier><identifier>DOI: 10.1175/2007JAMC1823.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Air temperature ; Albedo ; Albedo (solar) ; Americas ; Boundary layer ; Boundary layers ; Climatology. Bioclimatology. Climate change ; Cloud cover ; Datasets ; Depression ; Depth ; Earth, ocean, space ; Elevation angle ; Exact sciences and technology ; External geophysics ; Freezing ; Grasslands ; Independent sample ; Mass balance models ; Maximum temperatures ; Meteorology ; Minimum temperatures ; Precipitation ; Quality control ; Radiation ; Research methodology ; Snow ; Snow accumulation ; Snow cover ; Snow depth ; Snowfall ; Snowmelt ; Solar temperature ; Surface temperature ; Surface-air temperature relationships ; Temperature ; Temperature changes ; Temperature control ; Temperature data ; Temperature effects ; Variance analysis</subject><ispartof>Journal of applied meteorology (1988), 2008-07, Vol.47 (7), p.2008-2022</ispartof><rights>2008 American Meteorological Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 2008</rights><rights>Copyright American Meteorological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-65c884c1b097acd246069e4f20dc29c466f2a94b1303af0d845f38e5668bd6383</citedby><cites>FETCH-LOGICAL-c479t-65c884c1b097acd246069e4f20dc29c466f2a94b1303af0d845f38e5668bd6383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26172715$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26172715$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20499662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mote, Thomas L.</creatorcontrib><title>On the Role of Snow Cover in Depressing Air Temperature</title><title>Journal of applied meteorology (1988)</title><description>This study empirically examines the role of snow depth on the depression of air temperature after controlling for effect of temperature changes above the boundary layer. In addition, this study examines the role of cloud cover, solar elevation angle, and maximum snow-covered albedo on the temperature depression due to snow cover. The work uses a new dataset of daily, gridded snow depth, snowfall, and maximum and minimum temperatures for North America from 1960 to 2000 in conjunction with 850-hPa temperature data for the same period from the NCEP–NCAR reanalysis, version 1. The 850-hPa temperatures are used as a control to remove the effect of temperature changes above the boundary layer on surface air temperatures. Findings from an analysis of variance demonstrate that snow cover can result in daily maximum (minimum) temperature depressions on average of 4.5°C (2.6°C) for snow depths greater than 10 cm over the grasslands of central North America, but temperature depressions average only 1.2°C (1.1°C) overall. The temperature depression of snow cover is shown to be reduced by increased cloud cover and decreased maximum albedo, which is indicative of denser forest cover. The role of snow melting on temperature depression is further explored by comparing days with maximum temperatures above or below freezing.</description><subject>Air temperature</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Americas</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Cloud cover</subject><subject>Datasets</subject><subject>Depression</subject><subject>Depth</subject><subject>Earth, ocean, space</subject><subject>Elevation angle</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Freezing</subject><subject>Grasslands</subject><subject>Independent sample</subject><subject>Mass balance models</subject><subject>Maximum temperatures</subject><subject>Meteorology</subject><subject>Minimum temperatures</subject><subject>Precipitation</subject><subject>Quality control</subject><subject>Radiation</subject><subject>Research methodology</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snow cover</subject><subject>Snow depth</subject><subject>Snowfall</subject><subject>Snowmelt</subject><subject>Solar temperature</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Temperature control</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Variance analysis</subject><issn>1558-8424</issn><issn>0894-8763</issn><issn>1558-8432</issn><issn>1520-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtLA0EQhBdR8Hn1JgyK3hJ7et7HEN8ogsbzMpnM6obNTpzZKP57NyREEURP3dBfVVNUlu1T6FKqxCkCqJveXZ9qZF26lm1RIXRHc4brqx35Zrad0hiAc6XEVqbua9K8ePIQKk9CQR7r8E764c1HUtbkzE-jT6msn0mvjGTgJ1MfbTOLfjfbKGyV_N5y7mRPF-eD_lXn9v7yut-77TiuTNORwmnNHR2CUdaNkEuQxvMCYeTQOC5lgdbwIWXAbAEjzUXBtBdS6uFIMs12spOF7zSG15lPTT4pk_NVZWsfZilnXFA0beK_QARtEJn5BygFKCZa8OgHOA6zWLdpc9SIGiiY-d_DX6k2LgMjaAt1F5CLIaXoi3way4mNHzmFfF5e_r28fC44Xrra5GxVRFu7Mq1UCNwYKeffDxbcODUhft0lVaioYJ9fqp4d</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Mote, Thomas L.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20080701</creationdate><title>On the Role of Snow Cover in Depressing Air Temperature</title><author>Mote, Thomas L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-65c884c1b097acd246069e4f20dc29c466f2a94b1303af0d845f38e5668bd6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Air temperature</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Americas</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Cloud cover</topic><topic>Datasets</topic><topic>Depression</topic><topic>Depth</topic><topic>Earth, ocean, space</topic><topic>Elevation angle</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Freezing</topic><topic>Grasslands</topic><topic>Independent sample</topic><topic>Mass balance models</topic><topic>Maximum temperatures</topic><topic>Meteorology</topic><topic>Minimum temperatures</topic><topic>Precipitation</topic><topic>Quality control</topic><topic>Radiation</topic><topic>Research methodology</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snow cover</topic><topic>Snow depth</topic><topic>Snowfall</topic><topic>Snowmelt</topic><topic>Solar temperature</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Temperature control</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mote, Thomas L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mote, Thomas L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Role of Snow Cover in Depressing Air Temperature</atitle><jtitle>Journal of applied meteorology (1988)</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>47</volume><issue>7</issue><spage>2008</spage><epage>2022</epage><pages>2008-2022</pages><issn>1558-8424</issn><issn>0894-8763</issn><eissn>1558-8432</eissn><eissn>1520-0450</eissn><coden>JOAMEZ</coden><abstract>This study empirically examines the role of snow depth on the depression of air temperature after controlling for effect of temperature changes above the boundary layer. In addition, this study examines the role of cloud cover, solar elevation angle, and maximum snow-covered albedo on the temperature depression due to snow cover. The work uses a new dataset of daily, gridded snow depth, snowfall, and maximum and minimum temperatures for North America from 1960 to 2000 in conjunction with 850-hPa temperature data for the same period from the NCEP–NCAR reanalysis, version 1. The 850-hPa temperatures are used as a control to remove the effect of temperature changes above the boundary layer on surface air temperatures. Findings from an analysis of variance demonstrate that snow cover can result in daily maximum (minimum) temperature depressions on average of 4.5°C (2.6°C) for snow depths greater than 10 cm over the grasslands of central North America, but temperature depressions average only 1.2°C (1.1°C) overall. The temperature depression of snow cover is shown to be reduced by increased cloud cover and decreased maximum albedo, which is indicative of denser forest cover. The role of snow melting on temperature depression is further explored by comparing days with maximum temperatures above or below freezing.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2007JAMC1823.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology (1988), 2008-07, Vol.47 (7), p.2008-2022 |
issn | 1558-8424 0894-8763 1558-8432 1520-0450 |
language | eng |
recordid | cdi_proquest_miscellaneous_20892239 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Air temperature Albedo Albedo (solar) Americas Boundary layer Boundary layers Climatology. Bioclimatology. Climate change Cloud cover Datasets Depression Depth Earth, ocean, space Elevation angle Exact sciences and technology External geophysics Freezing Grasslands Independent sample Mass balance models Maximum temperatures Meteorology Minimum temperatures Precipitation Quality control Radiation Research methodology Snow Snow accumulation Snow cover Snow depth Snowfall Snowmelt Solar temperature Surface temperature Surface-air temperature relationships Temperature Temperature changes Temperature control Temperature data Temperature effects Variance analysis |
title | On the Role of Snow Cover in Depressing Air Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Role%20of%20Snow%20Cover%20in%20Depressing%20Air%20Temperature&rft.jtitle=Journal%20of%20applied%20meteorology%20(1988)&rft.au=Mote,%20Thomas%20L.&rft.date=2008-07-01&rft.volume=47&rft.issue=7&rft.spage=2008&rft.epage=2022&rft.pages=2008-2022&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/2007JAMC1823.1&rft_dat=%3Cjstor_proqu%3E26172715%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224630951&rft_id=info:pmid/&rft_jstor_id=26172715&rfr_iscdi=true |