Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning

In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-02, Vol.38 (2), p.325-336
Hauptverfasser: Yoon, Yeo Hun, Khan, Shujaat, Huh, Jaeyoung, Ye, Jong Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 325
container_title IEEE transactions on medical imaging
container_volume 38
creator Yoon, Yeo Hun
Khan, Shujaat
Huh, Jaeyoung
Ye, Jong Chul
description In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.
doi_str_mv 10.1109/TMI.2018.2864821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2088751954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8432500</ieee_id><sourcerecordid>2175666583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQQEVoSTZJ74VCEfSSi7cjWV8-tkm2XdgQSLLQSxGKNQoOtrWR7EP_fRV2m0NhYBjmzTDzCPnIYMkYNF8fbtZLDswsuVHCcHZEFkxKU3Epfr0jC-DaVACKn5DTnJ8BmJDQHJOTGhgozfiC_L4OoWs7HCf6vbqJHum2n5LLcR49XQ_uCekdtnHMU5rbqYsjXaU40Pv5sbp3w65HT-9W9MpNjm5zNz7RK8Qd3aBLY6nOyfvg-owfDvmMbFfXD5c_q83tj_Xlt03V1o2YKu6FRADDhWrB61Y65KGEROeCV4EZjxrQlU-F102jlUIfjA4NAx0E1mfkYr93l-LLjHmyQ5db7Hs3Ypyz5WCMlqyRoqBf_kOf45zGcp3lTEullDR1oWBPtSnmnDDYXeoGl_5YBvZVvS3q7at6e1BfRj4fFs-PA_q3gX-uC_BpD3SI-NY2ouYSoP4LlWWGVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175666583</pqid></control><display><type>article</type><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</creator><creatorcontrib>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</creatorcontrib><description>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2864821</identifier><identifier>PMID: 30106712</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abdomen - diagnostic imaging ; Algorithms ; B-mode ; Carotid Arteries - diagnostic imaging ; Deep Learning ; Diagnostic systems ; Hankel matrix ; Humans ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Imaging ; Machine learning ; multi-line acquisition ; Neural networks ; Radio frequency ; Redundancy ; Sampling ; Sidelobes ; Supply chains ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Ultrasound imaging</subject><ispartof>IEEE transactions on medical imaging, 2019-02, Vol.38 (2), p.325-336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</citedby><cites>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</cites><orcidid>0000-0001-9763-9609 ; 0000-0001-9676-6817 ; 0000-0001-8385-4420 ; 0000-0002-2126-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8432500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8432500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Yeo Hun</creatorcontrib><creatorcontrib>Khan, Shujaat</creatorcontrib><creatorcontrib>Huh, Jaeyoung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</description><subject>Abdomen - diagnostic imaging</subject><subject>Algorithms</subject><subject>B-mode</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Diagnostic systems</subject><subject>Hankel matrix</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>multi-line acquisition</subject><subject>Neural networks</subject><subject>Radio frequency</subject><subject>Redundancy</subject><subject>Sampling</subject><subject>Sidelobes</subject><subject>Supply chains</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Ultrasound imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r3DAQQEVoSTZJ74VCEfSSi7cjWV8-tkm2XdgQSLLQSxGKNQoOtrWR7EP_fRV2m0NhYBjmzTDzCPnIYMkYNF8fbtZLDswsuVHCcHZEFkxKU3Epfr0jC-DaVACKn5DTnJ8BmJDQHJOTGhgozfiC_L4OoWs7HCf6vbqJHum2n5LLcR49XQ_uCekdtnHMU5rbqYsjXaU40Pv5sbp3w65HT-9W9MpNjm5zNz7RK8Qd3aBLY6nOyfvg-owfDvmMbFfXD5c_q83tj_Xlt03V1o2YKu6FRADDhWrB61Y65KGEROeCV4EZjxrQlU-F102jlUIfjA4NAx0E1mfkYr93l-LLjHmyQ5db7Hs3Ypyz5WCMlqyRoqBf_kOf45zGcp3lTEullDR1oWBPtSnmnDDYXeoGl_5YBvZVvS3q7at6e1BfRj4fFs-PA_q3gX-uC_BpD3SI-NY2ouYSoP4LlWWGVA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yoon, Yeo Hun</creator><creator>Khan, Shujaat</creator><creator>Huh, Jaeyoung</creator><creator>Ye, Jong Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0001-9676-6817</orcidid><orcidid>https://orcid.org/0000-0001-8385-4420</orcidid><orcidid>https://orcid.org/0000-0002-2126-0763</orcidid></search><sort><creationdate>20190201</creationdate><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><author>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abdomen - diagnostic imaging</topic><topic>Algorithms</topic><topic>B-mode</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Diagnostic systems</topic><topic>Hankel matrix</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>multi-line acquisition</topic><topic>Neural networks</topic><topic>Radio frequency</topic><topic>Redundancy</topic><topic>Sampling</topic><topic>Sidelobes</topic><topic>Supply chains</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Yeo Hun</creatorcontrib><creatorcontrib>Khan, Shujaat</creatorcontrib><creatorcontrib>Huh, Jaeyoung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, Yeo Hun</au><au>Khan, Shujaat</au><au>Huh, Jaeyoung</au><au>Ye, Jong Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>325</spage><epage>336</epage><pages>325-336</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106712</pmid><doi>10.1109/TMI.2018.2864821</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0001-9676-6817</orcidid><orcidid>https://orcid.org/0000-0001-8385-4420</orcidid><orcidid>https://orcid.org/0000-0002-2126-0763</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-02, Vol.38 (2), p.325-336
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2088751954
source IEEE Electronic Library (IEL)
subjects Abdomen - diagnostic imaging
Algorithms
B-mode
Carotid Arteries - diagnostic imaging
Deep Learning
Diagnostic systems
Hankel matrix
Humans
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Imaging
Machine learning
multi-line acquisition
Neural networks
Radio frequency
Redundancy
Sampling
Sidelobes
Supply chains
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Ultrasound imaging
title Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20B-Mode%20Ultrasound%20Image%20Reconstruction%20From%20Sub-Sampled%20RF%20Data%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Yoon,%20Yeo%20Hun&rft.date=2019-02-01&rft.volume=38&rft.issue=2&rft.spage=325&rft.epage=336&rft.pages=325-336&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2864821&rft_dat=%3Cproquest_RIE%3E2175666583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175666583&rft_id=info:pmid/30106712&rft_ieee_id=8432500&rfr_iscdi=true