Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning
In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe ar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-02, Vol.38 (2), p.325-336 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 2 |
container_start_page | 325 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Yoon, Yeo Hun Khan, Shujaat Huh, Jaeyoung Ye, Jong Chul |
description | In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality. |
doi_str_mv | 10.1109/TMI.2018.2864821 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2088751954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8432500</ieee_id><sourcerecordid>2175666583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQQEVoSTZJ74VCEfSSi7cjWV8-tkm2XdgQSLLQSxGKNQoOtrWR7EP_fRV2m0NhYBjmzTDzCPnIYMkYNF8fbtZLDswsuVHCcHZEFkxKU3Epfr0jC-DaVACKn5DTnJ8BmJDQHJOTGhgozfiC_L4OoWs7HCf6vbqJHum2n5LLcR49XQ_uCekdtnHMU5rbqYsjXaU40Pv5sbp3w65HT-9W9MpNjm5zNz7RK8Qd3aBLY6nOyfvg-owfDvmMbFfXD5c_q83tj_Xlt03V1o2YKu6FRADDhWrB61Y65KGEROeCV4EZjxrQlU-F102jlUIfjA4NAx0E1mfkYr93l-LLjHmyQ5db7Hs3Ypyz5WCMlqyRoqBf_kOf45zGcp3lTEullDR1oWBPtSnmnDDYXeoGl_5YBvZVvS3q7at6e1BfRj4fFs-PA_q3gX-uC_BpD3SI-NY2ouYSoP4LlWWGVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175666583</pqid></control><display><type>article</type><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</creator><creatorcontrib>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</creatorcontrib><description>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2864821</identifier><identifier>PMID: 30106712</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Abdomen - diagnostic imaging ; Algorithms ; B-mode ; Carotid Arteries - diagnostic imaging ; Deep Learning ; Diagnostic systems ; Hankel matrix ; Humans ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Imaging ; Machine learning ; multi-line acquisition ; Neural networks ; Radio frequency ; Redundancy ; Sampling ; Sidelobes ; Supply chains ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Ultrasound imaging</subject><ispartof>IEEE transactions on medical imaging, 2019-02, Vol.38 (2), p.325-336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</citedby><cites>FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</cites><orcidid>0000-0001-9763-9609 ; 0000-0001-9676-6817 ; 0000-0001-8385-4420 ; 0000-0002-2126-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8432500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8432500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Yeo Hun</creatorcontrib><creatorcontrib>Khan, Shujaat</creatorcontrib><creatorcontrib>Huh, Jaeyoung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</description><subject>Abdomen - diagnostic imaging</subject><subject>Algorithms</subject><subject>B-mode</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Deep Learning</subject><subject>Diagnostic systems</subject><subject>Hankel matrix</subject><subject>Humans</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>multi-line acquisition</subject><subject>Neural networks</subject><subject>Radio frequency</subject><subject>Redundancy</subject><subject>Sampling</subject><subject>Sidelobes</subject><subject>Supply chains</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Ultrasound imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r3DAQQEVoSTZJ74VCEfSSi7cjWV8-tkm2XdgQSLLQSxGKNQoOtrWR7EP_fRV2m0NhYBjmzTDzCPnIYMkYNF8fbtZLDswsuVHCcHZEFkxKU3Epfr0jC-DaVACKn5DTnJ8BmJDQHJOTGhgozfiC_L4OoWs7HCf6vbqJHum2n5LLcR49XQ_uCekdtnHMU5rbqYsjXaU40Pv5sbp3w65HT-9W9MpNjm5zNz7RK8Qd3aBLY6nOyfvg-owfDvmMbFfXD5c_q83tj_Xlt03V1o2YKu6FRADDhWrB61Y65KGEROeCV4EZjxrQlU-F102jlUIfjA4NAx0E1mfkYr93l-LLjHmyQ5db7Hs3Ypyz5WCMlqyRoqBf_kOf45zGcp3lTEullDR1oWBPtSnmnDDYXeoGl_5YBvZVvS3q7at6e1BfRj4fFs-PA_q3gX-uC_BpD3SI-NY2ouYSoP4LlWWGVA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Yoon, Yeo Hun</creator><creator>Khan, Shujaat</creator><creator>Huh, Jaeyoung</creator><creator>Ye, Jong Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0001-9676-6817</orcidid><orcidid>https://orcid.org/0000-0001-8385-4420</orcidid><orcidid>https://orcid.org/0000-0002-2126-0763</orcidid></search><sort><creationdate>20190201</creationdate><title>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</title><author>Yoon, Yeo Hun ; Khan, Shujaat ; Huh, Jaeyoung ; Ye, Jong Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-2d45e008246c0d7c5ae2fe2f5eaafd6f18de70ea0184d799766edf87f9107f4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abdomen - diagnostic imaging</topic><topic>Algorithms</topic><topic>B-mode</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Deep Learning</topic><topic>Diagnostic systems</topic><topic>Hankel matrix</topic><topic>Humans</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>multi-line acquisition</topic><topic>Neural networks</topic><topic>Radio frequency</topic><topic>Redundancy</topic><topic>Sampling</topic><topic>Sidelobes</topic><topic>Supply chains</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Yeo Hun</creatorcontrib><creatorcontrib>Khan, Shujaat</creatorcontrib><creatorcontrib>Huh, Jaeyoung</creatorcontrib><creatorcontrib>Ye, Jong Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, Yeo Hun</au><au>Khan, Shujaat</au><au>Huh, Jaeyoung</au><au>Ye, Jong Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>38</volume><issue>2</issue><spage>325</spage><epage>336</epage><pages>325-336</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>In portable, 3-D, and ultra-fast ultrasound imaging systems, there is an increasing demand for the reconstruction of high-quality images from a limited number of radio-frequency (RF) measurements due to receiver (Rx) or transmit (Xmit) event sub-sampling. However, due to the presence of side lobe artifacts from RF sub-sampling, the standard beamformer often produces blurry images with less contrast, which are unsuitable for diagnostic purposes. Existing compressed sensing approaches often require either hardware changes or computationally expensive algorithms, but their quality improvements are limited. To address this problem, in this paper, we propose a novel deep learning approach that directly interpolates the missing RF data by utilizing redundancy in the Rx-Xmit plane. Our extensive experimental results using sub-sampled RF data from a multi-line acquisition B-mode system confirm that the proposed method can effectively reduce the data rate without sacrificing the image quality.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106712</pmid><doi>10.1109/TMI.2018.2864821</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9763-9609</orcidid><orcidid>https://orcid.org/0000-0001-9676-6817</orcidid><orcidid>https://orcid.org/0000-0001-8385-4420</orcidid><orcidid>https://orcid.org/0000-0002-2126-0763</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-02, Vol.38 (2), p.325-336 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_2088751954 |
source | IEEE Electronic Library (IEL) |
subjects | Abdomen - diagnostic imaging Algorithms B-mode Carotid Arteries - diagnostic imaging Deep Learning Diagnostic systems Hankel matrix Humans Image contrast Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Imaging Machine learning multi-line acquisition Neural networks Radio frequency Redundancy Sampling Sidelobes Supply chains Ultrasonic imaging Ultrasonography - methods Ultrasound Ultrasound imaging |
title | Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20B-Mode%20Ultrasound%20Image%20Reconstruction%20From%20Sub-Sampled%20RF%20Data%20Using%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Yoon,%20Yeo%20Hun&rft.date=2019-02-01&rft.volume=38&rft.issue=2&rft.spage=325&rft.epage=336&rft.pages=325-336&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2864821&rft_dat=%3Cproquest_RIE%3E2175666583%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2175666583&rft_id=info:pmid/30106712&rft_ieee_id=8432500&rfr_iscdi=true |