Classification consistency analysis for bootstrapping gene selection
Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a se...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2007-10, Vol.16 (6), p.527-539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 6 |
container_start_page | 527 |
container_title | Neural computing & applications |
container_volume | 16 |
creator | SHAONING PANG HAVUKKALA, Ilkka YINGJIE HU KASABOV, Nikola |
description | Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results. |
doi_str_mv | 10.1007/s00521-007-0110-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20887037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20887037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</originalsourceid><addsrcrecordid>eNpFkD9PwzAUxC0EEqXwAdiywBZ4jmM7HlH5K1VigdlyXLsySu3glw799jhqJaa7p3d3w4-QWwoPFEA-IgBvaF1sDZRCTc_IgraM1Qx4d04WoNryFS27JFeIPwDQio4vyPNqMIjBB2umkGJlU8SAk4v2UJlohkO5Kp9y1ac04ZTNOIa4rbYuugrd4OzcuiYX3gzobk66JN-vL1-r93r9-faxelrXloGYam-ElMpxITZO9VxYJnlTxILoN43dtJz7ru-8VU5QJVthOuad4NB1Rlip2JLcH3fHnH73Die9C2jdMJjo0h51U5ISmCxBegzanBCz83rMYWfyQVPQMy995KVnO_PStHTuTuMGrRl8NtEG_C8qWuhJwf4A8FRrfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20887037</pqid></control><display><type>article</type><title>Classification consistency analysis for bootstrapping gene selection</title><source>SpringerLink Journals</source><creator>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</creator><creatorcontrib>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</creatorcontrib><description>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-007-0110-1</identifier><language>eng</language><publisher>London: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematics ; Multivariate analysis ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Neural computing & applications, 2007-10, Vol.16 (6), p.527-539</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</citedby><cites>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19164376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHAONING PANG</creatorcontrib><creatorcontrib>HAVUKKALA, Ilkka</creatorcontrib><creatorcontrib>YINGJIE HU</creatorcontrib><creatorcontrib>KASABOV, Nikola</creatorcontrib><title>Classification consistency analysis for bootstrapping gene selection</title><title>Neural computing & applications</title><description>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkD9PwzAUxC0EEqXwAdiywBZ4jmM7HlH5K1VigdlyXLsySu3glw799jhqJaa7p3d3w4-QWwoPFEA-IgBvaF1sDZRCTc_IgraM1Qx4d04WoNryFS27JFeIPwDQio4vyPNqMIjBB2umkGJlU8SAk4v2UJlohkO5Kp9y1ac04ZTNOIa4rbYuugrd4OzcuiYX3gzobk66JN-vL1-r93r9-faxelrXloGYam-ElMpxITZO9VxYJnlTxILoN43dtJz7ru-8VU5QJVthOuad4NB1Rlip2JLcH3fHnH73Die9C2jdMJjo0h51U5ISmCxBegzanBCz83rMYWfyQVPQMy995KVnO_PStHTuTuMGrRl8NtEG_C8qWuhJwf4A8FRrfw</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>SHAONING PANG</creator><creator>HAVUKKALA, Ilkka</creator><creator>YINGJIE HU</creator><creator>KASABOV, Nikola</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20071001</creationdate><title>Classification consistency analysis for bootstrapping gene selection</title><author>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHAONING PANG</creatorcontrib><creatorcontrib>HAVUKKALA, Ilkka</creatorcontrib><creatorcontrib>YINGJIE HU</creatorcontrib><creatorcontrib>KASABOV, Nikola</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHAONING PANG</au><au>HAVUKKALA, Ilkka</au><au>YINGJIE HU</au><au>KASABOV, Nikola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification consistency analysis for bootstrapping gene selection</atitle><jtitle>Neural computing & applications</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>16</volume><issue>6</issue><spage>527</spage><epage>539</epage><pages>527-539</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</abstract><cop>London</cop><cop>Berlin</cop><cop>Secaucus, NJ</cop><pub>Springer</pub><doi>10.1007/s00521-007-0110-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2007-10, Vol.16 (6), p.527-539 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_miscellaneous_20887037 |
source | SpringerLink Journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Learning and adaptive systems Mathematics Multivariate analysis Parametric inference Probability and statistics Sciences and techniques of general use Statistics |
title | Classification consistency analysis for bootstrapping gene selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20consistency%20analysis%20for%20bootstrapping%20gene%20selection&rft.jtitle=Neural%20computing%20&%20applications&rft.au=SHAONING%20PANG&rft.date=2007-10-01&rft.volume=16&rft.issue=6&rft.spage=527&rft.epage=539&rft.pages=527-539&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-007-0110-1&rft_dat=%3Cproquest_cross%3E20887037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20887037&rft_id=info:pmid/&rfr_iscdi=true |