Classification consistency analysis for bootstrapping gene selection

Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2007-10, Vol.16 (6), p.527-539
Hauptverfasser: SHAONING PANG, HAVUKKALA, Ilkka, YINGJIE HU, KASABOV, Nikola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 6
container_start_page 527
container_title Neural computing & applications
container_volume 16
creator SHAONING PANG
HAVUKKALA, Ilkka
YINGJIE HU
KASABOV, Nikola
description Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.
doi_str_mv 10.1007/s00521-007-0110-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20887037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20887037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</originalsourceid><addsrcrecordid>eNpFkD9PwzAUxC0EEqXwAdiywBZ4jmM7HlH5K1VigdlyXLsySu3glw799jhqJaa7p3d3w4-QWwoPFEA-IgBvaF1sDZRCTc_IgraM1Qx4d04WoNryFS27JFeIPwDQio4vyPNqMIjBB2umkGJlU8SAk4v2UJlohkO5Kp9y1ac04ZTNOIa4rbYuugrd4OzcuiYX3gzobk66JN-vL1-r93r9-faxelrXloGYam-ElMpxITZO9VxYJnlTxILoN43dtJz7ru-8VU5QJVthOuad4NB1Rlip2JLcH3fHnH73Die9C2jdMJjo0h51U5ISmCxBegzanBCz83rMYWfyQVPQMy995KVnO_PStHTuTuMGrRl8NtEG_C8qWuhJwf4A8FRrfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20887037</pqid></control><display><type>article</type><title>Classification consistency analysis for bootstrapping gene selection</title><source>SpringerLink Journals</source><creator>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</creator><creatorcontrib>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</creatorcontrib><description>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-007-0110-1</identifier><language>eng</language><publisher>London: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematics ; Multivariate analysis ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Neural computing &amp; applications, 2007-10, Vol.16 (6), p.527-539</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</citedby><cites>FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19164376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHAONING PANG</creatorcontrib><creatorcontrib>HAVUKKALA, Ilkka</creatorcontrib><creatorcontrib>YINGJIE HU</creatorcontrib><creatorcontrib>KASABOV, Nikola</creatorcontrib><title>Classification consistency analysis for bootstrapping gene selection</title><title>Neural computing &amp; applications</title><description>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkD9PwzAUxC0EEqXwAdiywBZ4jmM7HlH5K1VigdlyXLsySu3glw799jhqJaa7p3d3w4-QWwoPFEA-IgBvaF1sDZRCTc_IgraM1Qx4d04WoNryFS27JFeIPwDQio4vyPNqMIjBB2umkGJlU8SAk4v2UJlohkO5Kp9y1ac04ZTNOIa4rbYuugrd4OzcuiYX3gzobk66JN-vL1-r93r9-faxelrXloGYam-ElMpxITZO9VxYJnlTxILoN43dtJz7ru-8VU5QJVthOuad4NB1Rlip2JLcH3fHnH73Die9C2jdMJjo0h51U5ISmCxBegzanBCz83rMYWfyQVPQMy995KVnO_PStHTuTuMGrRl8NtEG_C8qWuhJwf4A8FRrfw</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>SHAONING PANG</creator><creator>HAVUKKALA, Ilkka</creator><creator>YINGJIE HU</creator><creator>KASABOV, Nikola</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20071001</creationdate><title>Classification consistency analysis for bootstrapping gene selection</title><author>SHAONING PANG ; HAVUKKALA, Ilkka ; YINGJIE HU ; KASABOV, Nikola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-fa6779e566de9b56c375256cc06bd2cd455f8b8fc9e619746a83fe65088a6c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHAONING PANG</creatorcontrib><creatorcontrib>HAVUKKALA, Ilkka</creatorcontrib><creatorcontrib>YINGJIE HU</creatorcontrib><creatorcontrib>KASABOV, Nikola</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHAONING PANG</au><au>HAVUKKALA, Ilkka</au><au>YINGJIE HU</au><au>KASABOV, Nikola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification consistency analysis for bootstrapping gene selection</atitle><jtitle>Neural computing &amp; applications</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>16</volume><issue>6</issue><spage>527</spage><epage>539</epage><pages>527-539</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.</abstract><cop>London</cop><cop>Berlin</cop><cop>Secaucus, NJ</cop><pub>Springer</pub><doi>10.1007/s00521-007-0110-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2007-10, Vol.16 (6), p.527-539
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_miscellaneous_20887037
source SpringerLink Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Mathematics
Multivariate analysis
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
title Classification consistency analysis for bootstrapping gene selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20consistency%20analysis%20for%20bootstrapping%20gene%20selection&rft.jtitle=Neural%20computing%20&%20applications&rft.au=SHAONING%20PANG&rft.date=2007-10-01&rft.volume=16&rft.issue=6&rft.spage=527&rft.epage=539&rft.pages=527-539&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-007-0110-1&rft_dat=%3Cproquest_cross%3E20887037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20887037&rft_id=info:pmid/&rfr_iscdi=true