The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism

Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2008-04, Vol.378 (1), p.284-294
Hauptverfasser: Schmidberger, J W, Wilce, JA, Weightman, A J, Whisstock, J C, Wilce, MCJ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 1
container_start_page 284
container_title Journal of molecular biology
container_volume 378
creator Schmidberger, J W
Wilce, JA
Weightman, A J
Whisstock, J C
Wilce, MCJ
description Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I a-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ~130 amino acids that have ~16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.
doi_str_mv 10.1016/j.jmb.2008.02.035
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_20884509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20884509</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_208845093</originalsourceid><addsrcrecordid>eNqNjL1uwjAURj20EvTnAdju1C3ujUOQGREtogMMwI4uzqVx5MRtrkPVty-V-gCdviOdo0-pSY46x3z23OimPWmDaDUajUV5o8aIxmTGFrORuhNpELEspnasToeaYdl_S6IA-9QPLg09QzzDC9dvsOMLUxAg2PIXULamEMn56tde8Z07EoZVDBVQV8HCJX_hbO8Tw4ZdTZ2X9kHdnq8f_Pi39-pp9XpYrrOPPn4OLOnYenEcAnUcBzkatHZa4rz4d_gDOnJMcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20884509</pqid></control><display><type>article</type><title>The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism</title><source>Elsevier ScienceDirect Journals</source><creator>Schmidberger, J W ; Wilce, JA ; Weightman, A J ; Whisstock, J C ; Wilce, MCJ</creator><creatorcontrib>Schmidberger, J W ; Wilce, JA ; Weightman, A J ; Whisstock, J C ; Wilce, MCJ</creatorcontrib><description>Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I a-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ~130 amino acids that have ~16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.</description><identifier>ISSN: 0022-2836</identifier><identifier>DOI: 10.1016/j.jmb.2008.02.035</identifier><language>eng</language><subject>Pseudomonas putida</subject><ispartof>Journal of molecular biology, 2008-04, Vol.378 (1), p.284-294</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Schmidberger, J W</creatorcontrib><creatorcontrib>Wilce, JA</creatorcontrib><creatorcontrib>Weightman, A J</creatorcontrib><creatorcontrib>Whisstock, J C</creatorcontrib><creatorcontrib>Wilce, MCJ</creatorcontrib><title>The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism</title><title>Journal of molecular biology</title><description>Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I a-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ~130 amino acids that have ~16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.</description><subject>Pseudomonas putida</subject><issn>0022-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNjL1uwjAURj20EvTnAdju1C3ujUOQGREtogMMwI4uzqVx5MRtrkPVty-V-gCdviOdo0-pSY46x3z23OimPWmDaDUajUV5o8aIxmTGFrORuhNpELEspnasToeaYdl_S6IA-9QPLg09QzzDC9dvsOMLUxAg2PIXULamEMn56tde8Z07EoZVDBVQV8HCJX_hbO8Tw4ZdTZ2X9kHdnq8f_Pi39-pp9XpYrrOPPn4OLOnYenEcAnUcBzkatHZa4rz4d_gDOnJMcA</recordid><startdate>20080418</startdate><enddate>20080418</enddate><creator>Schmidberger, J W</creator><creator>Wilce, JA</creator><creator>Weightman, A J</creator><creator>Whisstock, J C</creator><creator>Wilce, MCJ</creator><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20080418</creationdate><title>The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism</title><author>Schmidberger, J W ; Wilce, JA ; Weightman, A J ; Whisstock, J C ; Wilce, MCJ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_208845093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Pseudomonas putida</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidberger, J W</creatorcontrib><creatorcontrib>Wilce, JA</creatorcontrib><creatorcontrib>Weightman, A J</creatorcontrib><creatorcontrib>Whisstock, J C</creatorcontrib><creatorcontrib>Wilce, MCJ</creatorcontrib><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidberger, J W</au><au>Wilce, JA</au><au>Weightman, A J</au><au>Whisstock, J C</au><au>Wilce, MCJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism</atitle><jtitle>Journal of molecular biology</jtitle><date>2008-04-18</date><risdate>2008</risdate><volume>378</volume><issue>1</issue><spage>284</spage><epage>294</epage><pages>284-294</pages><issn>0022-2836</issn><abstract>Haloacid dehalogenases catalyse the removal of halides from organic haloacids and are of interest for bioremediation and for their potential use in the synthesis of industrial chemicals. We present the crystal structure of the homodimer DehI from Pseudomonas putida strain PP3, the first structure of a group I a-haloacid dehalogenase that can process both l- and d-substrates. The structure shows that the DehI monomer consists of two domains of ~130 amino acids that have ~16% sequence identity yet adopt virtually identical and unique folds that form a pseudo-dimer. Analysis of the active site reveals the likely binding mode of both l- and d-substrates with respect to key catalytic residues. Asp189 is predicted to activate a water molecule for nucleophilic attack of the substrate chiral centre resulting in an inversion of configuration of either l- or d-substrates in contrast to d-only enzymes. These details will assist with future bioengineering of dehalogenases.</abstract><doi>10.1016/j.jmb.2008.02.035</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-04, Vol.378 (1), p.284-294
issn 0022-2836
language eng
recordid cdi_proquest_miscellaneous_20884509
source Elsevier ScienceDirect Journals
subjects Pseudomonas putida
title The Crystal Structure of DehI Reveals a New a-Haloacid Dehalogenase Fold and Active-Site Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A08%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crystal%20Structure%20of%20DehI%20Reveals%20a%20New%20a-Haloacid%20Dehalogenase%20Fold%20and%20Active-Site%20Mechanism&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Schmidberger,%20J%20W&rft.date=2008-04-18&rft.volume=378&rft.issue=1&rft.spage=284&rft.epage=294&rft.pages=284-294&rft.issn=0022-2836&rft_id=info:doi/10.1016/j.jmb.2008.02.035&rft_dat=%3Cproquest%3E20884509%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20884509&rft_id=info:pmid/&rfr_iscdi=true