Clinically applicable deep learning for diagnosis and referral in retinal disease
The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-09, Vol.24 (9), p.1342-1350 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1350 |
---|---|
container_issue | 9 |
container_start_page | 1342 |
container_title | Nature medicine |
container_volume | 24 |
creator | De Fauw, Jeffrey Ledsam, Joseph R. Romera-Paredes, Bernardino Nikolov, Stanislav Tomasev, Nenad Blackwell, Sam Askham, Harry Glorot, Xavier O’Donoghue, Brendan Visentin, Daniel van den Driessche, George Lakshminarayanan, Balaji Meyer, Clemens Mackinder, Faith Bouton, Simon Ayoub, Kareem Chopra, Reena King, Dominic Karthikesalingam, Alan Hughes, Cían O. Raine, Rosalind Hughes, Julian Sim, Dawn A. Egan, Catherine Tufail, Adnan Montgomery, Hugh Hassabis, Demis Rees, Geraint Back, Trevor Khaw, Peng T. Suleyman, Mustafa Cornebise, Julien Keane, Pearse A. Ronneberger, Olaf |
description | The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease. |
doi_str_mv | 10.1038/s41591-018-0107-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2088293476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572904635</galeid><sourcerecordid>A572904635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</originalsourceid><addsrcrecordid>eNqN0ktr3DAQAGBTGpo07Q_opRgKpT04HVmSJR_D0kcgEPqkNyFbY0dBK7mSDc2_r5ZNk2zYQjHCg_XNII-mKF4QOCFA5bvECG9JBUTmBaJqHhVHhLOmIgJ-Ps4xCFnJljeHxdOUrgCAAm-fFIc0cyYaeVR8Xjnrba-duy71NLkcdg5LgziVDnX01o_lEGJprB59SDaV2psy4oAxaldan-PZ-hwam1AnfFYcDNolfH7zPi6-f3j_bfWpOr_4eLY6Pa_6RvK5qpFgjwxFNwxacCO63ghDgRGsgXW0aZEYrDsQlNaMsIEPAjqhmeS16KWmx8Wbbd0phl8LplmtberROe0xLEnVIGXd0vybmb56QK_CEvOZsyIAkgOj7Z0atUNl_RDmqPtNUXXKRd0CayjPqtqjRvSY2xE8DjZ_3vEne3x-DK5tvzfh7U5CNjP-nke9pKTOvn75f3vxY9e-vmcvUbv5MgW3zDb4tAvJFvYxpJRvWk3RrnW8VgTUZu7Udu5Unju1mTu16fDLmw4v3RrNbcbfQcug3oKUt_yI8e4K_l31D8p03Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100850439</pqid></control><display><type>article</type><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</creator><creatorcontrib>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</creatorcontrib><description>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0107-6</identifier><identifier>PMID: 30104768</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 692/1807/1482 ; 692/700/139 ; 692/700/1421/2025 ; Aged ; Analysis ; Architecture ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Clinical Decision-Making ; Deep Learning ; Diagnostic imaging ; Diagnostic systems ; Female ; Humans ; Infectious Diseases ; Information storage and retrieval ; Machine learning ; Male ; Medical imaging equipment ; Metabolic Diseases ; Middle Aged ; Molecular Medicine ; Neurosciences ; Optical Coherence Tomography ; Referral and Consultation ; Retina ; Retina - diagnostic imaging ; Retina - pathology ; Retinal diseases ; Retinal Diseases - diagnosis ; Retinal Diseases - diagnostic imaging ; Tomography ; Tomography, Optical Coherence ; Training</subject><ispartof>Nature medicine, 2018-09, Vol.24 (9), p.1342-1350</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</citedby><cites>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</cites><orcidid>0000-0002-4264-8329 ; 0000-0002-9623-7007 ; 0000-0001-6901-0985 ; 0000-0001-8797-5019 ; 0000-0002-4266-1515 ; 0000-0002-9239-745X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0107-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0107-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Ledsam, Joseph R.</creatorcontrib><creatorcontrib>Romera-Paredes, Bernardino</creatorcontrib><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Tomasev, Nenad</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Glorot, Xavier</creatorcontrib><creatorcontrib>O’Donoghue, Brendan</creatorcontrib><creatorcontrib>Visentin, Daniel</creatorcontrib><creatorcontrib>van den Driessche, George</creatorcontrib><creatorcontrib>Lakshminarayanan, Balaji</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Mackinder, Faith</creatorcontrib><creatorcontrib>Bouton, Simon</creatorcontrib><creatorcontrib>Ayoub, Kareem</creatorcontrib><creatorcontrib>Chopra, Reena</creatorcontrib><creatorcontrib>King, Dominic</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Hughes, Cían O.</creatorcontrib><creatorcontrib>Raine, Rosalind</creatorcontrib><creatorcontrib>Hughes, Julian</creatorcontrib><creatorcontrib>Sim, Dawn A.</creatorcontrib><creatorcontrib>Egan, Catherine</creatorcontrib><creatorcontrib>Tufail, Adnan</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Khaw, Peng T.</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Cornebise, Julien</creatorcontrib><creatorcontrib>Keane, Pearse A.</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</description><subject>631/114/1305</subject><subject>692/1807/1482</subject><subject>692/700/139</subject><subject>692/700/1421/2025</subject><subject>Aged</subject><subject>Analysis</subject><subject>Architecture</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Clinical Decision-Making</subject><subject>Deep Learning</subject><subject>Diagnostic imaging</subject><subject>Diagnostic systems</subject><subject>Female</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Information storage and retrieval</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical imaging equipment</subject><subject>Metabolic Diseases</subject><subject>Middle Aged</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Optical Coherence Tomography</subject><subject>Referral and Consultation</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retina - pathology</subject><subject>Retinal diseases</subject><subject>Retinal Diseases - diagnosis</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence</subject><subject>Training</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ktr3DAQAGBTGpo07Q_opRgKpT04HVmSJR_D0kcgEPqkNyFbY0dBK7mSDc2_r5ZNk2zYQjHCg_XNII-mKF4QOCFA5bvECG9JBUTmBaJqHhVHhLOmIgJ-Ps4xCFnJljeHxdOUrgCAAm-fFIc0cyYaeVR8Xjnrba-duy71NLkcdg5LgziVDnX01o_lEGJprB59SDaV2psy4oAxaldan-PZ-hwam1AnfFYcDNolfH7zPi6-f3j_bfWpOr_4eLY6Pa_6RvK5qpFgjwxFNwxacCO63ghDgRGsgXW0aZEYrDsQlNaMsIEPAjqhmeS16KWmx8Wbbd0phl8LplmtberROe0xLEnVIGXd0vybmb56QK_CEvOZsyIAkgOj7Z0atUNl_RDmqPtNUXXKRd0CayjPqtqjRvSY2xE8DjZ_3vEne3x-DK5tvzfh7U5CNjP-nke9pKTOvn75f3vxY9e-vmcvUbv5MgW3zDb4tAvJFvYxpJRvWk3RrnW8VgTUZu7Udu5Unju1mTu16fDLmw4v3RrNbcbfQcug3oKUt_yI8e4K_l31D8p03Zw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>De Fauw, Jeffrey</creator><creator>Ledsam, Joseph R.</creator><creator>Romera-Paredes, Bernardino</creator><creator>Nikolov, Stanislav</creator><creator>Tomasev, Nenad</creator><creator>Blackwell, Sam</creator><creator>Askham, Harry</creator><creator>Glorot, Xavier</creator><creator>O’Donoghue, Brendan</creator><creator>Visentin, Daniel</creator><creator>van den Driessche, George</creator><creator>Lakshminarayanan, Balaji</creator><creator>Meyer, Clemens</creator><creator>Mackinder, Faith</creator><creator>Bouton, Simon</creator><creator>Ayoub, Kareem</creator><creator>Chopra, Reena</creator><creator>King, Dominic</creator><creator>Karthikesalingam, Alan</creator><creator>Hughes, Cían O.</creator><creator>Raine, Rosalind</creator><creator>Hughes, Julian</creator><creator>Sim, Dawn A.</creator><creator>Egan, Catherine</creator><creator>Tufail, Adnan</creator><creator>Montgomery, Hugh</creator><creator>Hassabis, Demis</creator><creator>Rees, Geraint</creator><creator>Back, Trevor</creator><creator>Khaw, Peng T.</creator><creator>Suleyman, Mustafa</creator><creator>Cornebise, Julien</creator><creator>Keane, Pearse A.</creator><creator>Ronneberger, Olaf</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4264-8329</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-9239-745X</orcidid></search><sort><creationdate>20180901</creationdate><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><author>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114/1305</topic><topic>692/1807/1482</topic><topic>692/700/139</topic><topic>692/700/1421/2025</topic><topic>Aged</topic><topic>Analysis</topic><topic>Architecture</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Clinical Decision-Making</topic><topic>Deep Learning</topic><topic>Diagnostic imaging</topic><topic>Diagnostic systems</topic><topic>Female</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Information storage and retrieval</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical imaging equipment</topic><topic>Metabolic Diseases</topic><topic>Middle Aged</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Optical Coherence Tomography</topic><topic>Referral and Consultation</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retina - pathology</topic><topic>Retinal diseases</topic><topic>Retinal Diseases - diagnosis</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Ledsam, Joseph R.</creatorcontrib><creatorcontrib>Romera-Paredes, Bernardino</creatorcontrib><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Tomasev, Nenad</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Glorot, Xavier</creatorcontrib><creatorcontrib>O’Donoghue, Brendan</creatorcontrib><creatorcontrib>Visentin, Daniel</creatorcontrib><creatorcontrib>van den Driessche, George</creatorcontrib><creatorcontrib>Lakshminarayanan, Balaji</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Mackinder, Faith</creatorcontrib><creatorcontrib>Bouton, Simon</creatorcontrib><creatorcontrib>Ayoub, Kareem</creatorcontrib><creatorcontrib>Chopra, Reena</creatorcontrib><creatorcontrib>King, Dominic</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Hughes, Cían O.</creatorcontrib><creatorcontrib>Raine, Rosalind</creatorcontrib><creatorcontrib>Hughes, Julian</creatorcontrib><creatorcontrib>Sim, Dawn A.</creatorcontrib><creatorcontrib>Egan, Catherine</creatorcontrib><creatorcontrib>Tufail, Adnan</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Khaw, Peng T.</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Cornebise, Julien</creatorcontrib><creatorcontrib>Keane, Pearse A.</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Fauw, Jeffrey</au><au>Ledsam, Joseph R.</au><au>Romera-Paredes, Bernardino</au><au>Nikolov, Stanislav</au><au>Tomasev, Nenad</au><au>Blackwell, Sam</au><au>Askham, Harry</au><au>Glorot, Xavier</au><au>O’Donoghue, Brendan</au><au>Visentin, Daniel</au><au>van den Driessche, George</au><au>Lakshminarayanan, Balaji</au><au>Meyer, Clemens</au><au>Mackinder, Faith</au><au>Bouton, Simon</au><au>Ayoub, Kareem</au><au>Chopra, Reena</au><au>King, Dominic</au><au>Karthikesalingam, Alan</au><au>Hughes, Cían O.</au><au>Raine, Rosalind</au><au>Hughes, Julian</au><au>Sim, Dawn A.</au><au>Egan, Catherine</au><au>Tufail, Adnan</au><au>Montgomery, Hugh</au><au>Hassabis, Demis</au><au>Rees, Geraint</au><au>Back, Trevor</au><au>Khaw, Peng T.</au><au>Suleyman, Mustafa</au><au>Cornebise, Julien</au><au>Keane, Pearse A.</au><au>Ronneberger, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinically applicable deep learning for diagnosis and referral in retinal disease</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>24</volume><issue>9</issue><spage>1342</spage><epage>1350</epage><pages>1342-1350</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.
A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30104768</pmid><doi>10.1038/s41591-018-0107-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4264-8329</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-9239-745X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2018-09, Vol.24 (9), p.1342-1350 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_2088293476 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/114/1305 692/1807/1482 692/700/139 692/700/1421/2025 Aged Analysis Architecture Artificial intelligence Biomedical and Life Sciences Biomedicine Cancer Research Clinical Decision-Making Deep Learning Diagnostic imaging Diagnostic systems Female Humans Infectious Diseases Information storage and retrieval Machine learning Male Medical imaging equipment Metabolic Diseases Middle Aged Molecular Medicine Neurosciences Optical Coherence Tomography Referral and Consultation Retina Retina - diagnostic imaging Retina - pathology Retinal diseases Retinal Diseases - diagnosis Retinal Diseases - diagnostic imaging Tomography Tomography, Optical Coherence Training |
title | Clinically applicable deep learning for diagnosis and referral in retinal disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinically%20applicable%20deep%20learning%20for%20diagnosis%20and%20referral%20in%20retinal%20disease&rft.jtitle=Nature%20medicine&rft.au=De%20Fauw,%20Jeffrey&rft.date=2018-09-01&rft.volume=24&rft.issue=9&rft.spage=1342&rft.epage=1350&rft.pages=1342-1350&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0107-6&rft_dat=%3Cgale_proqu%3EA572904635%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100850439&rft_id=info:pmid/30104768&rft_galeid=A572904635&rfr_iscdi=true |