Clinically applicable deep learning for diagnosis and referral in retinal disease

The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2018-09, Vol.24 (9), p.1342-1350
Hauptverfasser: De Fauw, Jeffrey, Ledsam, Joseph R., Romera-Paredes, Bernardino, Nikolov, Stanislav, Tomasev, Nenad, Blackwell, Sam, Askham, Harry, Glorot, Xavier, O’Donoghue, Brendan, Visentin, Daniel, van den Driessche, George, Lakshminarayanan, Balaji, Meyer, Clemens, Mackinder, Faith, Bouton, Simon, Ayoub, Kareem, Chopra, Reena, King, Dominic, Karthikesalingam, Alan, Hughes, Cían O., Raine, Rosalind, Hughes, Julian, Sim, Dawn A., Egan, Catherine, Tufail, Adnan, Montgomery, Hugh, Hassabis, Demis, Rees, Geraint, Back, Trevor, Khaw, Peng T., Suleyman, Mustafa, Cornebise, Julien, Keane, Pearse A., Ronneberger, Olaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1350
container_issue 9
container_start_page 1342
container_title Nature medicine
container_volume 24
creator De Fauw, Jeffrey
Ledsam, Joseph R.
Romera-Paredes, Bernardino
Nikolov, Stanislav
Tomasev, Nenad
Blackwell, Sam
Askham, Harry
Glorot, Xavier
O’Donoghue, Brendan
Visentin, Daniel
van den Driessche, George
Lakshminarayanan, Balaji
Meyer, Clemens
Mackinder, Faith
Bouton, Simon
Ayoub, Kareem
Chopra, Reena
King, Dominic
Karthikesalingam, Alan
Hughes, Cían O.
Raine, Rosalind
Hughes, Julian
Sim, Dawn A.
Egan, Catherine
Tufail, Adnan
Montgomery, Hugh
Hassabis, Demis
Rees, Geraint
Back, Trevor
Khaw, Peng T.
Suleyman, Mustafa
Cornebise, Julien
Keane, Pearse A.
Ronneberger, Olaf
description The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.
doi_str_mv 10.1038/s41591-018-0107-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2088293476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572904635</galeid><sourcerecordid>A572904635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</originalsourceid><addsrcrecordid>eNqN0ktr3DAQAGBTGpo07Q_opRgKpT04HVmSJR_D0kcgEPqkNyFbY0dBK7mSDc2_r5ZNk2zYQjHCg_XNII-mKF4QOCFA5bvECG9JBUTmBaJqHhVHhLOmIgJ-Ps4xCFnJljeHxdOUrgCAAm-fFIc0cyYaeVR8Xjnrba-duy71NLkcdg5LgziVDnX01o_lEGJprB59SDaV2psy4oAxaldan-PZ-hwam1AnfFYcDNolfH7zPi6-f3j_bfWpOr_4eLY6Pa_6RvK5qpFgjwxFNwxacCO63ghDgRGsgXW0aZEYrDsQlNaMsIEPAjqhmeS16KWmx8Wbbd0phl8LplmtberROe0xLEnVIGXd0vybmb56QK_CEvOZsyIAkgOj7Z0atUNl_RDmqPtNUXXKRd0CayjPqtqjRvSY2xE8DjZ_3vEne3x-DK5tvzfh7U5CNjP-nke9pKTOvn75f3vxY9e-vmcvUbv5MgW3zDb4tAvJFvYxpJRvWk3RrnW8VgTUZu7Udu5Unju1mTu16fDLmw4v3RrNbcbfQcug3oKUt_yI8e4K_l31D8p03Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100850439</pqid></control><display><type>article</type><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</creator><creatorcontrib>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</creatorcontrib><description>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0107-6</identifier><identifier>PMID: 30104768</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 692/1807/1482 ; 692/700/139 ; 692/700/1421/2025 ; Aged ; Analysis ; Architecture ; Artificial intelligence ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Clinical Decision-Making ; Deep Learning ; Diagnostic imaging ; Diagnostic systems ; Female ; Humans ; Infectious Diseases ; Information storage and retrieval ; Machine learning ; Male ; Medical imaging equipment ; Metabolic Diseases ; Middle Aged ; Molecular Medicine ; Neurosciences ; Optical Coherence Tomography ; Referral and Consultation ; Retina ; Retina - diagnostic imaging ; Retina - pathology ; Retinal diseases ; Retinal Diseases - diagnosis ; Retinal Diseases - diagnostic imaging ; Tomography ; Tomography, Optical Coherence ; Training</subject><ispartof>Nature medicine, 2018-09, Vol.24 (9), p.1342-1350</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</citedby><cites>FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</cites><orcidid>0000-0002-4264-8329 ; 0000-0002-9623-7007 ; 0000-0001-6901-0985 ; 0000-0001-8797-5019 ; 0000-0002-4266-1515 ; 0000-0002-9239-745X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0107-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0107-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30104768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Ledsam, Joseph R.</creatorcontrib><creatorcontrib>Romera-Paredes, Bernardino</creatorcontrib><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Tomasev, Nenad</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Glorot, Xavier</creatorcontrib><creatorcontrib>O’Donoghue, Brendan</creatorcontrib><creatorcontrib>Visentin, Daniel</creatorcontrib><creatorcontrib>van den Driessche, George</creatorcontrib><creatorcontrib>Lakshminarayanan, Balaji</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Mackinder, Faith</creatorcontrib><creatorcontrib>Bouton, Simon</creatorcontrib><creatorcontrib>Ayoub, Kareem</creatorcontrib><creatorcontrib>Chopra, Reena</creatorcontrib><creatorcontrib>King, Dominic</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Hughes, Cían O.</creatorcontrib><creatorcontrib>Raine, Rosalind</creatorcontrib><creatorcontrib>Hughes, Julian</creatorcontrib><creatorcontrib>Sim, Dawn A.</creatorcontrib><creatorcontrib>Egan, Catherine</creatorcontrib><creatorcontrib>Tufail, Adnan</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Khaw, Peng T.</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Cornebise, Julien</creatorcontrib><creatorcontrib>Keane, Pearse A.</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</description><subject>631/114/1305</subject><subject>692/1807/1482</subject><subject>692/700/139</subject><subject>692/700/1421/2025</subject><subject>Aged</subject><subject>Analysis</subject><subject>Architecture</subject><subject>Artificial intelligence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Clinical Decision-Making</subject><subject>Deep Learning</subject><subject>Diagnostic imaging</subject><subject>Diagnostic systems</subject><subject>Female</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Information storage and retrieval</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical imaging equipment</subject><subject>Metabolic Diseases</subject><subject>Middle Aged</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Optical Coherence Tomography</subject><subject>Referral and Consultation</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retina - pathology</subject><subject>Retinal diseases</subject><subject>Retinal Diseases - diagnosis</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence</subject><subject>Training</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ktr3DAQAGBTGpo07Q_opRgKpT04HVmSJR_D0kcgEPqkNyFbY0dBK7mSDc2_r5ZNk2zYQjHCg_XNII-mKF4QOCFA5bvECG9JBUTmBaJqHhVHhLOmIgJ-Ps4xCFnJljeHxdOUrgCAAm-fFIc0cyYaeVR8Xjnrba-duy71NLkcdg5LgziVDnX01o_lEGJprB59SDaV2psy4oAxaldan-PZ-hwam1AnfFYcDNolfH7zPi6-f3j_bfWpOr_4eLY6Pa_6RvK5qpFgjwxFNwxacCO63ghDgRGsgXW0aZEYrDsQlNaMsIEPAjqhmeS16KWmx8Wbbd0phl8LplmtberROe0xLEnVIGXd0vybmb56QK_CEvOZsyIAkgOj7Z0atUNl_RDmqPtNUXXKRd0CayjPqtqjRvSY2xE8DjZ_3vEne3x-DK5tvzfh7U5CNjP-nke9pKTOvn75f3vxY9e-vmcvUbv5MgW3zDb4tAvJFvYxpJRvWk3RrnW8VgTUZu7Udu5Unju1mTu16fDLmw4v3RrNbcbfQcug3oKUt_yI8e4K_l31D8p03Zw</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>De Fauw, Jeffrey</creator><creator>Ledsam, Joseph R.</creator><creator>Romera-Paredes, Bernardino</creator><creator>Nikolov, Stanislav</creator><creator>Tomasev, Nenad</creator><creator>Blackwell, Sam</creator><creator>Askham, Harry</creator><creator>Glorot, Xavier</creator><creator>O’Donoghue, Brendan</creator><creator>Visentin, Daniel</creator><creator>van den Driessche, George</creator><creator>Lakshminarayanan, Balaji</creator><creator>Meyer, Clemens</creator><creator>Mackinder, Faith</creator><creator>Bouton, Simon</creator><creator>Ayoub, Kareem</creator><creator>Chopra, Reena</creator><creator>King, Dominic</creator><creator>Karthikesalingam, Alan</creator><creator>Hughes, Cían O.</creator><creator>Raine, Rosalind</creator><creator>Hughes, Julian</creator><creator>Sim, Dawn A.</creator><creator>Egan, Catherine</creator><creator>Tufail, Adnan</creator><creator>Montgomery, Hugh</creator><creator>Hassabis, Demis</creator><creator>Rees, Geraint</creator><creator>Back, Trevor</creator><creator>Khaw, Peng T.</creator><creator>Suleyman, Mustafa</creator><creator>Cornebise, Julien</creator><creator>Keane, Pearse A.</creator><creator>Ronneberger, Olaf</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4264-8329</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-9239-745X</orcidid></search><sort><creationdate>20180901</creationdate><title>Clinically applicable deep learning for diagnosis and referral in retinal disease</title><author>De Fauw, Jeffrey ; Ledsam, Joseph R. ; Romera-Paredes, Bernardino ; Nikolov, Stanislav ; Tomasev, Nenad ; Blackwell, Sam ; Askham, Harry ; Glorot, Xavier ; O’Donoghue, Brendan ; Visentin, Daniel ; van den Driessche, George ; Lakshminarayanan, Balaji ; Meyer, Clemens ; Mackinder, Faith ; Bouton, Simon ; Ayoub, Kareem ; Chopra, Reena ; King, Dominic ; Karthikesalingam, Alan ; Hughes, Cían O. ; Raine, Rosalind ; Hughes, Julian ; Sim, Dawn A. ; Egan, Catherine ; Tufail, Adnan ; Montgomery, Hugh ; Hassabis, Demis ; Rees, Geraint ; Back, Trevor ; Khaw, Peng T. ; Suleyman, Mustafa ; Cornebise, Julien ; Keane, Pearse A. ; Ronneberger, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c685t-2e1ece4e7bffa75d7bcd7d3041e204b369e1de2b07332414f5f70b7a48527c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/114/1305</topic><topic>692/1807/1482</topic><topic>692/700/139</topic><topic>692/700/1421/2025</topic><topic>Aged</topic><topic>Analysis</topic><topic>Architecture</topic><topic>Artificial intelligence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Clinical Decision-Making</topic><topic>Deep Learning</topic><topic>Diagnostic imaging</topic><topic>Diagnostic systems</topic><topic>Female</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Information storage and retrieval</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical imaging equipment</topic><topic>Metabolic Diseases</topic><topic>Middle Aged</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Optical Coherence Tomography</topic><topic>Referral and Consultation</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retina - pathology</topic><topic>Retinal diseases</topic><topic>Retinal Diseases - diagnosis</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Ledsam, Joseph R.</creatorcontrib><creatorcontrib>Romera-Paredes, Bernardino</creatorcontrib><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Tomasev, Nenad</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Glorot, Xavier</creatorcontrib><creatorcontrib>O’Donoghue, Brendan</creatorcontrib><creatorcontrib>Visentin, Daniel</creatorcontrib><creatorcontrib>van den Driessche, George</creatorcontrib><creatorcontrib>Lakshminarayanan, Balaji</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Mackinder, Faith</creatorcontrib><creatorcontrib>Bouton, Simon</creatorcontrib><creatorcontrib>Ayoub, Kareem</creatorcontrib><creatorcontrib>Chopra, Reena</creatorcontrib><creatorcontrib>King, Dominic</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Hughes, Cían O.</creatorcontrib><creatorcontrib>Raine, Rosalind</creatorcontrib><creatorcontrib>Hughes, Julian</creatorcontrib><creatorcontrib>Sim, Dawn A.</creatorcontrib><creatorcontrib>Egan, Catherine</creatorcontrib><creatorcontrib>Tufail, Adnan</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Hassabis, Demis</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Khaw, Peng T.</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Cornebise, Julien</creatorcontrib><creatorcontrib>Keane, Pearse A.</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Fauw, Jeffrey</au><au>Ledsam, Joseph R.</au><au>Romera-Paredes, Bernardino</au><au>Nikolov, Stanislav</au><au>Tomasev, Nenad</au><au>Blackwell, Sam</au><au>Askham, Harry</au><au>Glorot, Xavier</au><au>O’Donoghue, Brendan</au><au>Visentin, Daniel</au><au>van den Driessche, George</au><au>Lakshminarayanan, Balaji</au><au>Meyer, Clemens</au><au>Mackinder, Faith</au><au>Bouton, Simon</au><au>Ayoub, Kareem</au><au>Chopra, Reena</au><au>King, Dominic</au><au>Karthikesalingam, Alan</au><au>Hughes, Cían O.</au><au>Raine, Rosalind</au><au>Hughes, Julian</au><au>Sim, Dawn A.</au><au>Egan, Catherine</au><au>Tufail, Adnan</au><au>Montgomery, Hugh</au><au>Hassabis, Demis</au><au>Rees, Geraint</au><au>Back, Trevor</au><au>Khaw, Peng T.</au><au>Suleyman, Mustafa</au><au>Cornebise, Julien</au><au>Keane, Pearse A.</au><au>Ronneberger, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinically applicable deep learning for diagnosis and referral in retinal disease</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>24</volume><issue>9</issue><spage>1342</spage><epage>1350</epage><pages>1342-1350</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting. A novel deep learning architecture performs device-independent tissue segmentation of clinical 3D retinal images followed by separate diagnostic classification that meets or exceeds human expert clinical diagnoses of retinal disease.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30104768</pmid><doi>10.1038/s41591-018-0107-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4264-8329</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-9239-745X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2018-09, Vol.24 (9), p.1342-1350
issn 1078-8956
1546-170X
language eng
recordid cdi_proquest_miscellaneous_2088293476
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/114/1305
692/1807/1482
692/700/139
692/700/1421/2025
Aged
Analysis
Architecture
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Clinical Decision-Making
Deep Learning
Diagnostic imaging
Diagnostic systems
Female
Humans
Infectious Diseases
Information storage and retrieval
Machine learning
Male
Medical imaging equipment
Metabolic Diseases
Middle Aged
Molecular Medicine
Neurosciences
Optical Coherence Tomography
Referral and Consultation
Retina
Retina - diagnostic imaging
Retina - pathology
Retinal diseases
Retinal Diseases - diagnosis
Retinal Diseases - diagnostic imaging
Tomography
Tomography, Optical Coherence
Training
title Clinically applicable deep learning for diagnosis and referral in retinal disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinically%20applicable%20deep%20learning%20for%20diagnosis%20and%20referral%20in%20retinal%20disease&rft.jtitle=Nature%20medicine&rft.au=De%20Fauw,%20Jeffrey&rft.date=2018-09-01&rft.volume=24&rft.issue=9&rft.spage=1342&rft.epage=1350&rft.pages=1342-1350&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0107-6&rft_dat=%3Cgale_proqu%3EA572904635%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100850439&rft_id=info:pmid/30104768&rft_galeid=A572904635&rfr_iscdi=true