Effect of Memory and Active Forces on Transition Path Time Distributions

An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2018-12, Vol.122 (49), p.11186-11194
Hauptverfasser: Carlon, E, Orland, H, Sakaue, T, Vanderzande, C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11194
container_issue 49
container_start_page 11186
container_title The journal of physical chemistry. B
container_volume 122
creator Carlon, E
Orland, H
Sakaue, T
Vanderzande, C
description An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)­molecular systems.
doi_str_mv 10.1021/acs.jpcb.8b06379
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087995422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087995422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujEUXvnkyPHlycfrAfR4IgJhg94LlpSxtL2C22uyb89xZZvXmYzGTy3svMD6EbAiMClDxIHUebnVajUkHOiuoEXZAxhSxVcdrPOYF8gC5j3ADQMS3zczRgkOzAqgu0mFlrdIu9xS-m9mGPZbPGE926L4PnPmgTsW_wKsgmutal8U22H3jlaoMfXWyDU91hHa_QmZXbaK77PkTv89lqusiWr0_P08kyk7wkbUbBGkqM0pakuwgrWKGNtUwxySsNRhPCNGclzzljhRpzC5pIqCqgmqs1sCG6O-bugv_sTGxF7aI2261sjO-ioFAWVTXmlCYpHKU6-BiDsWIXXC3DXhAQB34i8RMHfqLnlyy3fXqnarP-M_wCS4L7o-DH6rvQpGf_z_sG2PV6zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087995422</pqid></control><display><type>article</type><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><source>ACS Publications</source><creator>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</creator><creatorcontrib>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</creatorcontrib><description>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)­molecular systems.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b06379</identifier><identifier>PMID: 30102039</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11186-11194</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</citedby><cites>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</cites><orcidid>0000-0002-6983-2951 ; 0000-0001-8266-1096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b06379$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b06379$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30102039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlon, E</creatorcontrib><creatorcontrib>Orland, H</creatorcontrib><creatorcontrib>Sakaue, T</creatorcontrib><creatorcontrib>Vanderzande, C</creatorcontrib><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)­molecular systems.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujEUXvnkyPHlycfrAfR4IgJhg94LlpSxtL2C22uyb89xZZvXmYzGTy3svMD6EbAiMClDxIHUebnVajUkHOiuoEXZAxhSxVcdrPOYF8gC5j3ADQMS3zczRgkOzAqgu0mFlrdIu9xS-m9mGPZbPGE926L4PnPmgTsW_wKsgmutal8U22H3jlaoMfXWyDU91hHa_QmZXbaK77PkTv89lqusiWr0_P08kyk7wkbUbBGkqM0pakuwgrWKGNtUwxySsNRhPCNGclzzljhRpzC5pIqCqgmqs1sCG6O-bugv_sTGxF7aI2261sjO-ioFAWVTXmlCYpHKU6-BiDsWIXXC3DXhAQB34i8RMHfqLnlyy3fXqnarP-M_wCS4L7o-DH6rvQpGf_z_sG2PV6zA</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Carlon, E</creator><creator>Orland, H</creator><creator>Sakaue, T</creator><creator>Vanderzande, C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6983-2951</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid></search><sort><creationdate>20181213</creationdate><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><author>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlon, E</creatorcontrib><creatorcontrib>Orland, H</creatorcontrib><creatorcontrib>Sakaue, T</creatorcontrib><creatorcontrib>Vanderzande, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlon, E</au><au>Orland, H</au><au>Sakaue, T</au><au>Vanderzande, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Memory and Active Forces on Transition Path Time Distributions</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>122</volume><issue>49</issue><spage>11186</spage><epage>11194</epage><pages>11186-11194</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)­molecular systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30102039</pmid><doi>10.1021/acs.jpcb.8b06379</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6983-2951</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11186-11194
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_2087995422
source ACS Publications
title Effect of Memory and Active Forces on Transition Path Time Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Memory%20and%20Active%20Forces%20on%20Transition%20Path%20Time%20Distributions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Carlon,%20E&rft.date=2018-12-13&rft.volume=122&rft.issue=49&rft.spage=11186&rft.epage=11194&rft.pages=11186-11194&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b06379&rft_dat=%3Cproquest_cross%3E2087995422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087995422&rft_id=info:pmid/30102039&rfr_iscdi=true