Effect of Memory and Active Forces on Transition Path Time Distributions
An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process w...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2018-12, Vol.122 (49), p.11186-11194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11194 |
---|---|
container_issue | 49 |
container_start_page | 11186 |
container_title | The journal of physical chemistry. B |
container_volume | 122 |
creator | Carlon, E Orland, H Sakaue, T Vanderzande, C |
description | An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)molecular systems. |
doi_str_mv | 10.1021/acs.jpcb.8b06379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087995422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087995422</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujEUXvnkyPHlycfrAfR4IgJhg94LlpSxtL2C22uyb89xZZvXmYzGTy3svMD6EbAiMClDxIHUebnVajUkHOiuoEXZAxhSxVcdrPOYF8gC5j3ADQMS3zczRgkOzAqgu0mFlrdIu9xS-m9mGPZbPGE926L4PnPmgTsW_wKsgmutal8U22H3jlaoMfXWyDU91hHa_QmZXbaK77PkTv89lqusiWr0_P08kyk7wkbUbBGkqM0pakuwgrWKGNtUwxySsNRhPCNGclzzljhRpzC5pIqCqgmqs1sCG6O-bugv_sTGxF7aI2261sjO-ioFAWVTXmlCYpHKU6-BiDsWIXXC3DXhAQB34i8RMHfqLnlyy3fXqnarP-M_wCS4L7o-DH6rvQpGf_z_sG2PV6zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087995422</pqid></control><display><type>article</type><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><source>ACS Publications</source><creator>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</creator><creatorcontrib>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</creatorcontrib><description>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)molecular systems.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.8b06379</identifier><identifier>PMID: 30102039</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11186-11194</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</citedby><cites>FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</cites><orcidid>0000-0002-6983-2951 ; 0000-0001-8266-1096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.8b06379$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.8b06379$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30102039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carlon, E</creatorcontrib><creatorcontrib>Orland, H</creatorcontrib><creatorcontrib>Sakaue, T</creatorcontrib><creatorcontrib>Vanderzande, C</creatorcontrib><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)molecular systems.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujEUXvnkyPHlycfrAfR4IgJhg94LlpSxtL2C22uyb89xZZvXmYzGTy3svMD6EbAiMClDxIHUebnVajUkHOiuoEXZAxhSxVcdrPOYF8gC5j3ADQMS3zczRgkOzAqgu0mFlrdIu9xS-m9mGPZbPGE926L4PnPmgTsW_wKsgmutal8U22H3jlaoMfXWyDU91hHa_QmZXbaK77PkTv89lqusiWr0_P08kyk7wkbUbBGkqM0pakuwgrWKGNtUwxySsNRhPCNGclzzljhRpzC5pIqCqgmqs1sCG6O-bugv_sTGxF7aI2261sjO-ioFAWVTXmlCYpHKU6-BiDsWIXXC3DXhAQB34i8RMHfqLnlyy3fXqnarP-M_wCS4L7o-DH6rvQpGf_z_sG2PV6zA</recordid><startdate>20181213</startdate><enddate>20181213</enddate><creator>Carlon, E</creator><creator>Orland, H</creator><creator>Sakaue, T</creator><creator>Vanderzande, C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6983-2951</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid></search><sort><creationdate>20181213</creationdate><title>Effect of Memory and Active Forces on Transition Path Time Distributions</title><author>Carlon, E ; Orland, H ; Sakaue, T ; Vanderzande, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-20fe21ebcf110613737ceff3b3a49c0ec113c438464337b54f0c1a09902c4bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carlon, E</creatorcontrib><creatorcontrib>Orland, H</creatorcontrib><creatorcontrib>Sakaue, T</creatorcontrib><creatorcontrib>Vanderzande, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carlon, E</au><au>Orland, H</au><au>Sakaue, T</au><au>Vanderzande, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Memory and Active Forces on Transition Path Time Distributions</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2018-12-13</date><risdate>2018</risdate><volume>122</volume><issue>49</issue><spage>11186</spage><epage>11194</epage><pages>11186-11194</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>An analytical expression is derived for the transition path time distribution for a one-dimensional particle crossing of a parabolic barrier. Two cases are analyzed: (i) a non-Markovian process described by a generalized Langevin equation with a power-law memory kernel and (ii) a Markovian process with a noise violating the fluctuation–dissipation theorem, modeling the stochastic dynamics generated by active forces. In case i, we show that the anomalous dynamics strongly affect the short time behavior of the distributions, but this happens only for very rare events not influencing the overall statistics. At long times the decay is always exponential, in disagreement with a recent study suggesting a stretched exponential decay. In case ii, the active forces do not substantially modify the short time behavior of the distribution but do lead to an overall decrease of the average transition path time. These findings offer some novel insights, useful for the analysis of experiments of transition path times in (bio)molecular systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30102039</pmid><doi>10.1021/acs.jpcb.8b06379</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6983-2951</orcidid><orcidid>https://orcid.org/0000-0001-8266-1096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2018-12, Vol.122 (49), p.11186-11194 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_2087995422 |
source | ACS Publications |
title | Effect of Memory and Active Forces on Transition Path Time Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Memory%20and%20Active%20Forces%20on%20Transition%20Path%20Time%20Distributions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Carlon,%20E&rft.date=2018-12-13&rft.volume=122&rft.issue=49&rft.spage=11186&rft.epage=11194&rft.pages=11186-11194&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.8b06379&rft_dat=%3Cproquest_cross%3E2087995422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087995422&rft_id=info:pmid/30102039&rfr_iscdi=true |