Dynamics of magnetization under stimulus-induced rotary saturation sequence

[Display omitted] •Analytical solution of magnetization dynamics under SIRS.•Two modes in the analytical solution.•Modes depending on target oscillating field.•The solution agreed with measurements. We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2018-10, Vol.295, p.38-44
Hauptverfasser: Ueda, Hiroyuki, Seki, Hiroaki, Ito, Yosuke, Oida, Takenori, Taniguchi, Yo, Kobayashi, Testsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 38
container_title Journal of magnetic resonance (1997)
container_volume 295
creator Ueda, Hiroyuki
Seki, Hiroaki
Ito, Yosuke
Oida, Takenori
Taniguchi, Yo
Kobayashi, Testsuo
description [Display omitted] •Analytical solution of magnetization dynamics under SIRS.•Two modes in the analytical solution.•Modes depending on target oscillating field.•The solution agreed with measurements. We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating magnetic fields using MRI) and derived an analytical solution of the Bloch equation to understand magnetization dynamics mathematically and comprehensively and to conduct simulations without sequential-calculation techniques such as the Runge-Kutta method. We formulated the dynamics using the Bloch equation, introducing an additional rotating frame and some approximations to make it into a homogeneous differential equation. Moreover, we found that there are two modes depending on the target oscillating magnetic field. To confirm the validity of the solution, we experimentally investigated its characteristics and performed curve fitting using the analytical model. Considering the constraints on the frame, the analytical solution was found to agree with experimental data. The experimental data indicate that it is necessary to design robust sequences compensating B0 or B1lock spatial inhomogeneity to improve measurements. Therefore, experimenters should consider the dynamics of magnetization with RF pulses to rewind the spin phase for accurate measurements.
doi_str_mv 10.1016/j.jmr.2018.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087596134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780718301757</els_id><sourcerecordid>2087596134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-c362238ea86c627c0ca073a0cdb5086bc4b011358620d5484200b1e4856376873</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwA1hQRpaEcxx_VEyofIpKLDBbju0iR01S7Bip_HpcUhiZ7obn3rt7EDrHUGDA7KopmtYXJWBRAC8AqgM0xTBnOQjKDn96yLkAPkEnITQAGFMOx2hCIFGU4il6vt12qnU6ZP0qa9V7Zwf3pQbXd1nsjPVZGFwb1zHkrjNRW5P5flB-mwU1RD-CwX5E22l7io5Wah3s2b7O0Nv93eviMV--PDwtbpa5rvB8yDVhZUmEVYJpVnINWgEnCrSpKQhW66pOhxIqWAmGVqIqAWpsq_QT4UxwMkOXY-7G92lzGGTrgrbrtepsH4MsQXA6Z5hUCcUjqn0fgrcrufGuTfdLDHLnUDYyOZQ7hxK4TA7TzMU-PtatNX8Tv9IScD0CNj356ayXQbudAOO81YM0vfsn_hsrhoF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087596134</pqid></control><display><type>article</type><title>Dynamics of magnetization under stimulus-induced rotary saturation sequence</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ueda, Hiroyuki ; Seki, Hiroaki ; Ito, Yosuke ; Oida, Takenori ; Taniguchi, Yo ; Kobayashi, Testsuo</creator><creatorcontrib>Ueda, Hiroyuki ; Seki, Hiroaki ; Ito, Yosuke ; Oida, Takenori ; Taniguchi, Yo ; Kobayashi, Testsuo</creatorcontrib><description>[Display omitted] •Analytical solution of magnetization dynamics under SIRS.•Two modes in the analytical solution.•Modes depending on target oscillating field.•The solution agreed with measurements. We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating magnetic fields using MRI) and derived an analytical solution of the Bloch equation to understand magnetization dynamics mathematically and comprehensively and to conduct simulations without sequential-calculation techniques such as the Runge-Kutta method. We formulated the dynamics using the Bloch equation, introducing an additional rotating frame and some approximations to make it into a homogeneous differential equation. Moreover, we found that there are two modes depending on the target oscillating magnetic field. To confirm the validity of the solution, we experimentally investigated its characteristics and performed curve fitting using the analytical model. Considering the constraints on the frame, the analytical solution was found to agree with experimental data. The experimental data indicate that it is necessary to design robust sequences compensating B0 or B1lock spatial inhomogeneity to improve measurements. Therefore, experimenters should consider the dynamics of magnetization with RF pulses to rewind the spin phase for accurate measurements.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2018.07.004</identifier><identifier>PMID: 30096551</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Analytical solution ; Bloch equation ; Magnetization dynamics ; MRI ; SIRS</subject><ispartof>Journal of magnetic resonance (1997), 2018-10, Vol.295, p.38-44</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-c362238ea86c627c0ca073a0cdb5086bc4b011358620d5484200b1e4856376873</citedby><cites>FETCH-LOGICAL-c419t-c362238ea86c627c0ca073a0cdb5086bc4b011358620d5484200b1e4856376873</cites><orcidid>0000-0002-7615-6314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2018.07.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30096551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueda, Hiroyuki</creatorcontrib><creatorcontrib>Seki, Hiroaki</creatorcontrib><creatorcontrib>Ito, Yosuke</creatorcontrib><creatorcontrib>Oida, Takenori</creatorcontrib><creatorcontrib>Taniguchi, Yo</creatorcontrib><creatorcontrib>Kobayashi, Testsuo</creatorcontrib><title>Dynamics of magnetization under stimulus-induced rotary saturation sequence</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>[Display omitted] •Analytical solution of magnetization dynamics under SIRS.•Two modes in the analytical solution.•Modes depending on target oscillating field.•The solution agreed with measurements. We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating magnetic fields using MRI) and derived an analytical solution of the Bloch equation to understand magnetization dynamics mathematically and comprehensively and to conduct simulations without sequential-calculation techniques such as the Runge-Kutta method. We formulated the dynamics using the Bloch equation, introducing an additional rotating frame and some approximations to make it into a homogeneous differential equation. Moreover, we found that there are two modes depending on the target oscillating magnetic field. To confirm the validity of the solution, we experimentally investigated its characteristics and performed curve fitting using the analytical model. Considering the constraints on the frame, the analytical solution was found to agree with experimental data. The experimental data indicate that it is necessary to design robust sequences compensating B0 or B1lock spatial inhomogeneity to improve measurements. Therefore, experimenters should consider the dynamics of magnetization with RF pulses to rewind the spin phase for accurate measurements.</description><subject>Analytical solution</subject><subject>Bloch equation</subject><subject>Magnetization dynamics</subject><subject>MRI</subject><subject>SIRS</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwA1hQRpaEcxx_VEyofIpKLDBbju0iR01S7Bip_HpcUhiZ7obn3rt7EDrHUGDA7KopmtYXJWBRAC8AqgM0xTBnOQjKDn96yLkAPkEnITQAGFMOx2hCIFGU4il6vt12qnU6ZP0qa9V7Zwf3pQbXd1nsjPVZGFwb1zHkrjNRW5P5flB-mwU1RD-CwX5E22l7io5Wah3s2b7O0Nv93eviMV--PDwtbpa5rvB8yDVhZUmEVYJpVnINWgEnCrSpKQhW66pOhxIqWAmGVqIqAWpsq_QT4UxwMkOXY-7G92lzGGTrgrbrtepsH4MsQXA6Z5hUCcUjqn0fgrcrufGuTfdLDHLnUDYyOZQ7hxK4TA7TzMU-PtatNX8Tv9IScD0CNj356ayXQbudAOO81YM0vfsn_hsrhoF6</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Ueda, Hiroyuki</creator><creator>Seki, Hiroaki</creator><creator>Ito, Yosuke</creator><creator>Oida, Takenori</creator><creator>Taniguchi, Yo</creator><creator>Kobayashi, Testsuo</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7615-6314</orcidid></search><sort><creationdate>201810</creationdate><title>Dynamics of magnetization under stimulus-induced rotary saturation sequence</title><author>Ueda, Hiroyuki ; Seki, Hiroaki ; Ito, Yosuke ; Oida, Takenori ; Taniguchi, Yo ; Kobayashi, Testsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-c362238ea86c627c0ca073a0cdb5086bc4b011358620d5484200b1e4856376873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical solution</topic><topic>Bloch equation</topic><topic>Magnetization dynamics</topic><topic>MRI</topic><topic>SIRS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Hiroyuki</creatorcontrib><creatorcontrib>Seki, Hiroaki</creatorcontrib><creatorcontrib>Ito, Yosuke</creatorcontrib><creatorcontrib>Oida, Takenori</creatorcontrib><creatorcontrib>Taniguchi, Yo</creatorcontrib><creatorcontrib>Kobayashi, Testsuo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Hiroyuki</au><au>Seki, Hiroaki</au><au>Ito, Yosuke</au><au>Oida, Takenori</au><au>Taniguchi, Yo</au><au>Kobayashi, Testsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of magnetization under stimulus-induced rotary saturation sequence</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2018-10</date><risdate>2018</risdate><volume>295</volume><spage>38</spage><epage>44</epage><pages>38-44</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted] •Analytical solution of magnetization dynamics under SIRS.•Two modes in the analytical solution.•Modes depending on target oscillating field.•The solution agreed with measurements. We studied stimulus-induced rotary-saturation preparation (which enables measurement of oscillating magnetic fields using MRI) and derived an analytical solution of the Bloch equation to understand magnetization dynamics mathematically and comprehensively and to conduct simulations without sequential-calculation techniques such as the Runge-Kutta method. We formulated the dynamics using the Bloch equation, introducing an additional rotating frame and some approximations to make it into a homogeneous differential equation. Moreover, we found that there are two modes depending on the target oscillating magnetic field. To confirm the validity of the solution, we experimentally investigated its characteristics and performed curve fitting using the analytical model. Considering the constraints on the frame, the analytical solution was found to agree with experimental data. The experimental data indicate that it is necessary to design robust sequences compensating B0 or B1lock spatial inhomogeneity to improve measurements. Therefore, experimenters should consider the dynamics of magnetization with RF pulses to rewind the spin phase for accurate measurements.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30096551</pmid><doi>10.1016/j.jmr.2018.07.004</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7615-6314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2018-10, Vol.295, p.38-44
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_2087596134
source Access via ScienceDirect (Elsevier)
subjects Analytical solution
Bloch equation
Magnetization dynamics
MRI
SIRS
title Dynamics of magnetization under stimulus-induced rotary saturation sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20magnetization%20under%20stimulus-induced%20rotary%20saturation%20sequence&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Ueda,%20Hiroyuki&rft.date=2018-10&rft.volume=295&rft.spage=38&rft.epage=44&rft.pages=38-44&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2018.07.004&rft_dat=%3Cproquest_cross%3E2087596134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087596134&rft_id=info:pmid/30096551&rft_els_id=S1090780718301757&rfr_iscdi=true