Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents

A series of functionalized N‐alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N‐alkyl side chains) structural modifications, and studied as potential sorbents for CO2. The sorption capacities of as prepared bare ImILs could be enhan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2018-11, Vol.19 (21), p.2879-2884
Hauptverfasser: Simon, Nathalia M., Zanatta, Marcileia, Neumann, Jessé, Girard, Anne‐Lise, Marin, Graciane, Stassen, Hubert, Dupont, Jairton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2884
container_issue 21
container_start_page 2879
container_title Chemphyschem
container_volume 19
creator Simon, Nathalia M.
Zanatta, Marcileia
Neumann, Jessé
Girard, Anne‐Lise
Marin, Graciane
Stassen, Hubert
Dupont, Jairton
description A series of functionalized N‐alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N‐alkyl side chains) structural modifications, and studied as potential sorbents for CO2. The sorption capacities of as prepared bare ImILs could be enhanced from 0.20 to 0.60 molar fraction by variation of cation‐anion‐CO2 and IL‐CO2‐water interaction. By combining NMR spectroscopy with molecular dynamics simulations, a good description of interactions between ImIL and CO2 can be obtained. Three types of CO2 sorption modes have been evidenced depending on the structure of the ImIL ion pair: Physisorption, formation of bicarbonate, and covalent interaction through the nucleophilic addition of CO2 to the cation or anion. The highest CO2 sorption capacity was observed with the ImIL containing the 1‐n‐butyl‐3‐methylimidazolium cation associated with the carboxylate anions (succinate and malonate). This study provides helpful clues for better understanding the structure‐activity relationship of this class of materials and the ion pair influence on CO2 capture. Caught in a trap: Three types of CO2 sorption in ionic liquids have been observed: Physi‐sorption, formation of bicarbonate, and covalent interaction between the CO2 and the cation or the anion. Combining NMR spectroscopy and molecular dynamics simulations indicated that the ability to capture is related to the nature and the interaction of the cation and anion.
doi_str_mv 10.1002/cphc.201800751
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087588514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129860188</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2661-63bfb55760fff08efadb0ca4aac7f7a2a44fcd3c584e0eca6fb9010bf5e0de843</originalsourceid><addsrcrecordid>eNpdkEFLwzAUx4MoOKdXzwUvXjZf0qRNj7OoKwwV1HNI0wQz2rRrWmSePHoUP-I-iSsbO3j6v8f_x-PxQ-gSwxQDkBvVvKspAcwBYoaP0AjTMJnEEcXH-5mSkJ2iM--XAMAhxiP0mMrO1m7z_Ttzu0yfSJC5TrdSDY0PrAuyyhbysy5tX22-fm6l10WQ1c6qYGFXvS2Cl7rNtev8OToxsvT6Yp9j9HZ_95rOJ4unhyydLSYNiSI8icLc5IzFERhjgGsjixyUpFKq2MSSSEqNKkLFONWglYxMngCG3DANheY0HKPr3d2mrVe99p2orFe6LKXTde8FAR4zzhke0Kt_6LLuW7f9ThBMEh5tjfEtleyoD1vqtWhaW8l2LTCIwa0Y3IqDW5E-z9PDFv4BEc5zOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129860188</pqid></control><display><type>article</type><title>Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Simon, Nathalia M. ; Zanatta, Marcileia ; Neumann, Jessé ; Girard, Anne‐Lise ; Marin, Graciane ; Stassen, Hubert ; Dupont, Jairton</creator><creatorcontrib>Simon, Nathalia M. ; Zanatta, Marcileia ; Neumann, Jessé ; Girard, Anne‐Lise ; Marin, Graciane ; Stassen, Hubert ; Dupont, Jairton</creatorcontrib><description>A series of functionalized N‐alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N‐alkyl side chains) structural modifications, and studied as potential sorbents for CO2. The sorption capacities of as prepared bare ImILs could be enhanced from 0.20 to 0.60 molar fraction by variation of cation‐anion‐CO2 and IL‐CO2‐water interaction. By combining NMR spectroscopy with molecular dynamics simulations, a good description of interactions between ImIL and CO2 can be obtained. Three types of CO2 sorption modes have been evidenced depending on the structure of the ImIL ion pair: Physisorption, formation of bicarbonate, and covalent interaction through the nucleophilic addition of CO2 to the cation or anion. The highest CO2 sorption capacity was observed with the ImIL containing the 1‐n‐butyl‐3‐methylimidazolium cation associated with the carboxylate anions (succinate and malonate). This study provides helpful clues for better understanding the structure‐activity relationship of this class of materials and the ion pair influence on CO2 capture. Caught in a trap: Three types of CO2 sorption in ionic liquids have been observed: Physi‐sorption, formation of bicarbonate, and covalent interaction between the CO2 and the cation or the anion. Combining NMR spectroscopy and molecular dynamics simulations indicated that the ability to capture is related to the nature and the interaction of the cation and anion.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201800751</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>anionic influencer ; Anions ; Bicarbonates ; Carbon dioxide ; carbon dioxide capture ; carbon dioxide sorption ; Carbon sequestration ; Carboxylates ; cationic influencer ; Cations ; Ionic liquids ; Ions ; Molecular dynamics ; molecular dynamics simulations ; NMR spectroscopy ; Sorbents ; Sorption</subject><ispartof>Chemphyschem, 2018-11, Vol.19 (21), p.2879-2884</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2258-1224 ; 0000-0002-3080-3627 ; 0000-0001-6945-5802 ; 0000-0003-3237-0770 ; 0000-0002-6034-7757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201800751$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201800751$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Simon, Nathalia M.</creatorcontrib><creatorcontrib>Zanatta, Marcileia</creatorcontrib><creatorcontrib>Neumann, Jessé</creatorcontrib><creatorcontrib>Girard, Anne‐Lise</creatorcontrib><creatorcontrib>Marin, Graciane</creatorcontrib><creatorcontrib>Stassen, Hubert</creatorcontrib><creatorcontrib>Dupont, Jairton</creatorcontrib><title>Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents</title><title>Chemphyschem</title><description>A series of functionalized N‐alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N‐alkyl side chains) structural modifications, and studied as potential sorbents for CO2. The sorption capacities of as prepared bare ImILs could be enhanced from 0.20 to 0.60 molar fraction by variation of cation‐anion‐CO2 and IL‐CO2‐water interaction. By combining NMR spectroscopy with molecular dynamics simulations, a good description of interactions between ImIL and CO2 can be obtained. Three types of CO2 sorption modes have been evidenced depending on the structure of the ImIL ion pair: Physisorption, formation of bicarbonate, and covalent interaction through the nucleophilic addition of CO2 to the cation or anion. The highest CO2 sorption capacity was observed with the ImIL containing the 1‐n‐butyl‐3‐methylimidazolium cation associated with the carboxylate anions (succinate and malonate). This study provides helpful clues for better understanding the structure‐activity relationship of this class of materials and the ion pair influence on CO2 capture. Caught in a trap: Three types of CO2 sorption in ionic liquids have been observed: Physi‐sorption, formation of bicarbonate, and covalent interaction between the CO2 and the cation or the anion. Combining NMR spectroscopy and molecular dynamics simulations indicated that the ability to capture is related to the nature and the interaction of the cation and anion.</description><subject>anionic influencer</subject><subject>Anions</subject><subject>Bicarbonates</subject><subject>Carbon dioxide</subject><subject>carbon dioxide capture</subject><subject>carbon dioxide sorption</subject><subject>Carbon sequestration</subject><subject>Carboxylates</subject><subject>cationic influencer</subject><subject>Cations</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Molecular dynamics</subject><subject>molecular dynamics simulations</subject><subject>NMR spectroscopy</subject><subject>Sorbents</subject><subject>Sorption</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAUx4MoOKdXzwUvXjZf0qRNj7OoKwwV1HNI0wQz2rRrWmSePHoUP-I-iSsbO3j6v8f_x-PxQ-gSwxQDkBvVvKspAcwBYoaP0AjTMJnEEcXH-5mSkJ2iM--XAMAhxiP0mMrO1m7z_Ttzu0yfSJC5TrdSDY0PrAuyyhbysy5tX22-fm6l10WQ1c6qYGFXvS2Cl7rNtev8OToxsvT6Yp9j9HZ_95rOJ4unhyydLSYNiSI8icLc5IzFERhjgGsjixyUpFKq2MSSSEqNKkLFONWglYxMngCG3DANheY0HKPr3d2mrVe99p2orFe6LKXTde8FAR4zzhke0Kt_6LLuW7f9ThBMEh5tjfEtleyoD1vqtWhaW8l2LTCIwa0Y3IqDW5E-z9PDFv4BEc5zOA</recordid><startdate>20181105</startdate><enddate>20181105</enddate><creator>Simon, Nathalia M.</creator><creator>Zanatta, Marcileia</creator><creator>Neumann, Jessé</creator><creator>Girard, Anne‐Lise</creator><creator>Marin, Graciane</creator><creator>Stassen, Hubert</creator><creator>Dupont, Jairton</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2258-1224</orcidid><orcidid>https://orcid.org/0000-0002-3080-3627</orcidid><orcidid>https://orcid.org/0000-0001-6945-5802</orcidid><orcidid>https://orcid.org/0000-0003-3237-0770</orcidid><orcidid>https://orcid.org/0000-0002-6034-7757</orcidid></search><sort><creationdate>20181105</creationdate><title>Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents</title><author>Simon, Nathalia M. ; Zanatta, Marcileia ; Neumann, Jessé ; Girard, Anne‐Lise ; Marin, Graciane ; Stassen, Hubert ; Dupont, Jairton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2661-63bfb55760fff08efadb0ca4aac7f7a2a44fcd3c584e0eca6fb9010bf5e0de843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>anionic influencer</topic><topic>Anions</topic><topic>Bicarbonates</topic><topic>Carbon dioxide</topic><topic>carbon dioxide capture</topic><topic>carbon dioxide sorption</topic><topic>Carbon sequestration</topic><topic>Carboxylates</topic><topic>cationic influencer</topic><topic>Cations</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Molecular dynamics</topic><topic>molecular dynamics simulations</topic><topic>NMR spectroscopy</topic><topic>Sorbents</topic><topic>Sorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Nathalia M.</creatorcontrib><creatorcontrib>Zanatta, Marcileia</creatorcontrib><creatorcontrib>Neumann, Jessé</creatorcontrib><creatorcontrib>Girard, Anne‐Lise</creatorcontrib><creatorcontrib>Marin, Graciane</creatorcontrib><creatorcontrib>Stassen, Hubert</creatorcontrib><creatorcontrib>Dupont, Jairton</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Nathalia M.</au><au>Zanatta, Marcileia</au><au>Neumann, Jessé</au><au>Girard, Anne‐Lise</au><au>Marin, Graciane</au><au>Stassen, Hubert</au><au>Dupont, Jairton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents</atitle><jtitle>Chemphyschem</jtitle><date>2018-11-05</date><risdate>2018</risdate><volume>19</volume><issue>21</issue><spage>2879</spage><epage>2884</epage><pages>2879-2884</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>A series of functionalized N‐alkylimidazolium based ionic liquids (ImILs) were designed, through anion (carboxylates and halogenated) and cation (N‐alkyl side chains) structural modifications, and studied as potential sorbents for CO2. The sorption capacities of as prepared bare ImILs could be enhanced from 0.20 to 0.60 molar fraction by variation of cation‐anion‐CO2 and IL‐CO2‐water interaction. By combining NMR spectroscopy with molecular dynamics simulations, a good description of interactions between ImIL and CO2 can be obtained. Three types of CO2 sorption modes have been evidenced depending on the structure of the ImIL ion pair: Physisorption, formation of bicarbonate, and covalent interaction through the nucleophilic addition of CO2 to the cation or anion. The highest CO2 sorption capacity was observed with the ImIL containing the 1‐n‐butyl‐3‐methylimidazolium cation associated with the carboxylate anions (succinate and malonate). This study provides helpful clues for better understanding the structure‐activity relationship of this class of materials and the ion pair influence on CO2 capture. Caught in a trap: Three types of CO2 sorption in ionic liquids have been observed: Physi‐sorption, formation of bicarbonate, and covalent interaction between the CO2 and the cation or the anion. Combining NMR spectroscopy and molecular dynamics simulations indicated that the ability to capture is related to the nature and the interaction of the cation and anion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.201800751</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2258-1224</orcidid><orcidid>https://orcid.org/0000-0002-3080-3627</orcidid><orcidid>https://orcid.org/0000-0001-6945-5802</orcidid><orcidid>https://orcid.org/0000-0003-3237-0770</orcidid><orcidid>https://orcid.org/0000-0002-6034-7757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2018-11, Vol.19 (21), p.2879-2884
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2087588514
source Wiley Online Library Journals Frontfile Complete
subjects anionic influencer
Anions
Bicarbonates
Carbon dioxide
carbon dioxide capture
carbon dioxide sorption
Carbon sequestration
Carboxylates
cationic influencer
Cations
Ionic liquids
Ions
Molecular dynamics
molecular dynamics simulations
NMR spectroscopy
Sorbents
Sorption
title Cation−Anion−CO2 Interactions in Imidazolium‐Based Ionic Liquid Sorbents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%E2%88%92Anion%E2%88%92CO2%20Interactions%20in%20Imidazolium%E2%80%90Based%20Ionic%20Liquid%20Sorbents&rft.jtitle=Chemphyschem&rft.au=Simon,%20Nathalia%20M.&rft.date=2018-11-05&rft.volume=19&rft.issue=21&rft.spage=2879&rft.epage=2884&rft.pages=2879-2884&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201800751&rft_dat=%3Cproquest_wiley%3E2129860188%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129860188&rft_id=info:pmid/&rfr_iscdi=true