Transferrin and ferritin response to bacterial infection: The role of the liver and brain in fish

Iron is essential for growth and survival, but it is also toxic when in excess. Thus, there is a tight regulation of iron that is accomplished by the interaction of several genes including the iron transporter transferrin and iron storage protein ferritin. These genes are also known to be involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental and comparative immunology 2009-07, Vol.33 (7), p.848-857
Hauptverfasser: Neves, João V., Wilson, Jonathan M., Rodrigues, Pedro N.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron is essential for growth and survival, but it is also toxic when in excess. Thus, there is a tight regulation of iron that is accomplished by the interaction of several genes including the iron transporter transferrin and iron storage protein ferritin. These genes are also known to be involved in response to infection. The aim of this study was to understand the role of transferrin and ferritin in infection and iron metabolism in fish. Thus, sea bass transferrin and ferritin H cDNAs were isolated from liver, cloned and characterized. Transferrin constitutive expression was found to be highest in the liver, but also with significant expression in the brain, particularly in the highly vascularized region connecting the inferior lobe of the hypothalamus and the saccus vasculosus. Ferritin, on the other hand, was expressed in all tested organs, but also significantly higher in the liver. Fish were subjected to either experimental bacterial infection or iron modulation and transferrin and ferritin mRNA expression levels were analyzed, along with several iron regulatory parameters. Transferrin expression was found to decrease in the liver and increase in the brain in response to infection and to increase in the liver in iron deficiency. Ferritin expression was found to inversely reflect transferrin in the liver, increasing in infection and iron overload and decreasing in iron deficiency, whereas in the brain, ferritin expression was also increased in infection. These findings demonstrate the evolutionary conservation of transferrin and ferritin dual functions in vertebrates, being involved in both the immune response and iron metabolism.
ISSN:0145-305X
1879-0089
DOI:10.1016/j.dci.2009.02.001