Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?

Background Life cycle prediction measures, that provide information on the probability of failure of equipments, have been applied in electronic and mechanical engineering and for predicting the strength of dental implants. However, the same has not been utilized as yet in medical equipment such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry and laboratory medicine 2018-11, Vol.56 (12), p.2067-2071
Hauptverfasser: Verma, Alekh, Narula, Aastha, Katyal, Akshi, Yadav, Shakti Kumar, Anand, Priyanka, Jahan, Aarzoo, Pruthi, Sonam Kumar, Sarin, Namrata, Gupta, Ruchika, Singh, Sompal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2071
container_issue 12
container_start_page 2067
container_title Clinical chemistry and laboratory medicine
container_volume 56
creator Verma, Alekh
Narula, Aastha
Katyal, Akshi
Yadav, Shakti Kumar
Anand, Priyanka
Jahan, Aarzoo
Pruthi, Sonam Kumar
Sarin, Namrata
Gupta, Ruchika
Singh, Sompal
description Background Life cycle prediction measures, that provide information on the probability of failure of equipments, have been applied in electronic and mechanical engineering and for predicting the strength of dental implants. However, the same has not been utilized as yet in medical equipment such as hematology analyzers. Methods Failure data of five automated hematology analyzers (3-part differential) was collected over 14 consecutive months and a Weibull probability plot was made. The scale and shape parameters of this plot were used to predict failure probability distribution. This was then combined with various costs involved in remedial maintenance to get a cost analysis. Results The analyzers in their "useful life" period were found to suffer fewer actual and predicted failures compared to those in the "wear out" phase. Cost analysis showed a considerably higher per month cost of remedial maintenance of analyzers compared to the price of a comprehensive maintenance contract. Conclusions Our study demonstrates, for the first time, that Weibull distribution can be applied well to hematology analyzers for modeling of failure data and the resultant information is helpful in the cost analysis of maintenance to allow for prudent and informed decision making with regards to the mode of maintenance of analyzers.
doi_str_mv 10.1515/cclm-2018-0569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2086258011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086258011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-e1f55161240dda677b24a830cc503a81d4df14660154328840ad0ef0c94dedeb3</originalsourceid><addsrcrecordid>eNptkctrFjEUxYMo9qFblxJw42Zq3pPPhUVKq0LBjeJyyCR3akpmMs0D-fzrzfSrCuLqnsXvnvs4CL2g5IxKKt9YG-aOEao7ItXuETqmgved4Jw-vteiU4rRI3SS8y0hVErRP0VHnBC9Izt5jMKV8aEmwMkUwGsC523xccFxwnBX_TrDUt5iaxb8DfxYQ8DO55KavMdGwGZdgweHS8Smljg3I4e_Q6sxxJs9NosJ-5-Q8vkz9GQyIcPzh3qKvl5dfrn42F1__vDp4v11Z0VPSwd0kpIqygRxzqi-H5kwmhNrJeFGUyfcRIVS7RzBmdaCGEdgInYnHDgY-Sl6ffBdU7yrkMsw-2whBLNArHlgRCsmNaG0oa_-QW9jTW3jRm2YZEpv1NmBsinmnGAa1uRnk_YDJcOWw7DlMGw5DFsOreHlg20dZ3B_8N-Pb8C7A_DDhALJwU2q-yb-jv-_s2xvYUT1_BdRupiW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2208652681</pqid></control><display><type>article</type><title>Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?</title><source>MEDLINE</source><source>De Gruyter journals</source><creator>Verma, Alekh ; Narula, Aastha ; Katyal, Akshi ; Yadav, Shakti Kumar ; Anand, Priyanka ; Jahan, Aarzoo ; Pruthi, Sonam Kumar ; Sarin, Namrata ; Gupta, Ruchika ; Singh, Sompal</creator><creatorcontrib>Verma, Alekh ; Narula, Aastha ; Katyal, Akshi ; Yadav, Shakti Kumar ; Anand, Priyanka ; Jahan, Aarzoo ; Pruthi, Sonam Kumar ; Sarin, Namrata ; Gupta, Ruchika ; Singh, Sompal</creatorcontrib><description>Background Life cycle prediction measures, that provide information on the probability of failure of equipments, have been applied in electronic and mechanical engineering and for predicting the strength of dental implants. However, the same has not been utilized as yet in medical equipment such as hematology analyzers. Methods Failure data of five automated hematology analyzers (3-part differential) was collected over 14 consecutive months and a Weibull probability plot was made. The scale and shape parameters of this plot were used to predict failure probability distribution. This was then combined with various costs involved in remedial maintenance to get a cost analysis. Results The analyzers in their "useful life" period were found to suffer fewer actual and predicted failures compared to those in the "wear out" phase. Cost analysis showed a considerably higher per month cost of remedial maintenance of analyzers compared to the price of a comprehensive maintenance contract. Conclusions Our study demonstrates, for the first time, that Weibull distribution can be applied well to hematology analyzers for modeling of failure data and the resultant information is helpful in the cost analysis of maintenance to allow for prudent and informed decision making with regards to the mode of maintenance of analyzers.</description><identifier>ISSN: 1434-6621</identifier><identifier>EISSN: 1437-4331</identifier><identifier>DOI: 10.1515/cclm-2018-0569</identifier><identifier>PMID: 30089095</identifier><language>eng</language><publisher>Germany: De Gruyter</publisher><subject>analyzer ; Analyzers ; Automation ; Cost analysis ; Decision analysis ; Decision making ; Dental implants ; Dental prosthetics ; Dental restorative materials ; Failure ; Failure analysis ; failure rate ; Failure rates ; Hematology ; Hematology - instrumentation ; Humans ; Life cycles ; Maintenance ; Mechanical engineering ; Medical equipment ; prediction ; Predictions ; Predictive Value of Tests ; Probability distribution ; Prospective Studies ; Statistical analysis ; Surgical implants ; Weibull distribution</subject><ispartof>Clinical chemistry and laboratory medicine, 2018-11, Vol.56 (12), p.2067-2071</ispartof><rights>2018 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-e1f55161240dda677b24a830cc503a81d4df14660154328840ad0ef0c94dedeb3</citedby><cites>FETCH-LOGICAL-c471t-e1f55161240dda677b24a830cc503a81d4df14660154328840ad0ef0c94dedeb3</cites><orcidid>0000-0003-0235-063X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/cclm-2018-0569/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/cclm-2018-0569/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,66497,68281</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30089095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Alekh</creatorcontrib><creatorcontrib>Narula, Aastha</creatorcontrib><creatorcontrib>Katyal, Akshi</creatorcontrib><creatorcontrib>Yadav, Shakti Kumar</creatorcontrib><creatorcontrib>Anand, Priyanka</creatorcontrib><creatorcontrib>Jahan, Aarzoo</creatorcontrib><creatorcontrib>Pruthi, Sonam Kumar</creatorcontrib><creatorcontrib>Sarin, Namrata</creatorcontrib><creatorcontrib>Gupta, Ruchika</creatorcontrib><creatorcontrib>Singh, Sompal</creatorcontrib><title>Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?</title><title>Clinical chemistry and laboratory medicine</title><addtitle>Clin Chem Lab Med</addtitle><description>Background Life cycle prediction measures, that provide information on the probability of failure of equipments, have been applied in electronic and mechanical engineering and for predicting the strength of dental implants. However, the same has not been utilized as yet in medical equipment such as hematology analyzers. Methods Failure data of five automated hematology analyzers (3-part differential) was collected over 14 consecutive months and a Weibull probability plot was made. The scale and shape parameters of this plot were used to predict failure probability distribution. This was then combined with various costs involved in remedial maintenance to get a cost analysis. Results The analyzers in their "useful life" period were found to suffer fewer actual and predicted failures compared to those in the "wear out" phase. Cost analysis showed a considerably higher per month cost of remedial maintenance of analyzers compared to the price of a comprehensive maintenance contract. Conclusions Our study demonstrates, for the first time, that Weibull distribution can be applied well to hematology analyzers for modeling of failure data and the resultant information is helpful in the cost analysis of maintenance to allow for prudent and informed decision making with regards to the mode of maintenance of analyzers.</description><subject>analyzer</subject><subject>Analyzers</subject><subject>Automation</subject><subject>Cost analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Dental implants</subject><subject>Dental prosthetics</subject><subject>Dental restorative materials</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>failure rate</subject><subject>Failure rates</subject><subject>Hematology</subject><subject>Hematology - instrumentation</subject><subject>Humans</subject><subject>Life cycles</subject><subject>Maintenance</subject><subject>Mechanical engineering</subject><subject>Medical equipment</subject><subject>prediction</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Probability distribution</subject><subject>Prospective Studies</subject><subject>Statistical analysis</subject><subject>Surgical implants</subject><subject>Weibull distribution</subject><issn>1434-6621</issn><issn>1437-4331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkctrFjEUxYMo9qFblxJw42Zq3pPPhUVKq0LBjeJyyCR3akpmMs0D-fzrzfSrCuLqnsXvnvs4CL2g5IxKKt9YG-aOEao7ItXuETqmgved4Jw-vteiU4rRI3SS8y0hVErRP0VHnBC9Izt5jMKV8aEmwMkUwGsC523xccFxwnBX_TrDUt5iaxb8DfxYQ8DO55KavMdGwGZdgweHS8Smljg3I4e_Q6sxxJs9NosJ-5-Q8vkz9GQyIcPzh3qKvl5dfrn42F1__vDp4v11Z0VPSwd0kpIqygRxzqi-H5kwmhNrJeFGUyfcRIVS7RzBmdaCGEdgInYnHDgY-Sl6ffBdU7yrkMsw-2whBLNArHlgRCsmNaG0oa_-QW9jTW3jRm2YZEpv1NmBsinmnGAa1uRnk_YDJcOWw7DlMGw5DFsOreHlg20dZ3B_8N-Pb8C7A_DDhALJwU2q-yb-jv-_s2xvYUT1_BdRupiW</recordid><startdate>20181127</startdate><enddate>20181127</enddate><creator>Verma, Alekh</creator><creator>Narula, Aastha</creator><creator>Katyal, Akshi</creator><creator>Yadav, Shakti Kumar</creator><creator>Anand, Priyanka</creator><creator>Jahan, Aarzoo</creator><creator>Pruthi, Sonam Kumar</creator><creator>Sarin, Namrata</creator><creator>Gupta, Ruchika</creator><creator>Singh, Sompal</creator><general>De Gruyter</general><general>Walter De Gruyter &amp; Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0235-063X</orcidid></search><sort><creationdate>20181127</creationdate><title>Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?</title><author>Verma, Alekh ; Narula, Aastha ; Katyal, Akshi ; Yadav, Shakti Kumar ; Anand, Priyanka ; Jahan, Aarzoo ; Pruthi, Sonam Kumar ; Sarin, Namrata ; Gupta, Ruchika ; Singh, Sompal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-e1f55161240dda677b24a830cc503a81d4df14660154328840ad0ef0c94dedeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>analyzer</topic><topic>Analyzers</topic><topic>Automation</topic><topic>Cost analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Dental implants</topic><topic>Dental prosthetics</topic><topic>Dental restorative materials</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>failure rate</topic><topic>Failure rates</topic><topic>Hematology</topic><topic>Hematology - instrumentation</topic><topic>Humans</topic><topic>Life cycles</topic><topic>Maintenance</topic><topic>Mechanical engineering</topic><topic>Medical equipment</topic><topic>prediction</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Probability distribution</topic><topic>Prospective Studies</topic><topic>Statistical analysis</topic><topic>Surgical implants</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Alekh</creatorcontrib><creatorcontrib>Narula, Aastha</creatorcontrib><creatorcontrib>Katyal, Akshi</creatorcontrib><creatorcontrib>Yadav, Shakti Kumar</creatorcontrib><creatorcontrib>Anand, Priyanka</creatorcontrib><creatorcontrib>Jahan, Aarzoo</creatorcontrib><creatorcontrib>Pruthi, Sonam Kumar</creatorcontrib><creatorcontrib>Sarin, Namrata</creatorcontrib><creatorcontrib>Gupta, Ruchika</creatorcontrib><creatorcontrib>Singh, Sompal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical chemistry and laboratory medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Alekh</au><au>Narula, Aastha</au><au>Katyal, Akshi</au><au>Yadav, Shakti Kumar</au><au>Anand, Priyanka</au><au>Jahan, Aarzoo</au><au>Pruthi, Sonam Kumar</au><au>Sarin, Namrata</au><au>Gupta, Ruchika</au><au>Singh, Sompal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?</atitle><jtitle>Clinical chemistry and laboratory medicine</jtitle><addtitle>Clin Chem Lab Med</addtitle><date>2018-11-27</date><risdate>2018</risdate><volume>56</volume><issue>12</issue><spage>2067</spage><epage>2071</epage><pages>2067-2071</pages><issn>1434-6621</issn><eissn>1437-4331</eissn><abstract>Background Life cycle prediction measures, that provide information on the probability of failure of equipments, have been applied in electronic and mechanical engineering and for predicting the strength of dental implants. However, the same has not been utilized as yet in medical equipment such as hematology analyzers. Methods Failure data of five automated hematology analyzers (3-part differential) was collected over 14 consecutive months and a Weibull probability plot was made. The scale and shape parameters of this plot were used to predict failure probability distribution. This was then combined with various costs involved in remedial maintenance to get a cost analysis. Results The analyzers in their "useful life" period were found to suffer fewer actual and predicted failures compared to those in the "wear out" phase. Cost analysis showed a considerably higher per month cost of remedial maintenance of analyzers compared to the price of a comprehensive maintenance contract. Conclusions Our study demonstrates, for the first time, that Weibull distribution can be applied well to hematology analyzers for modeling of failure data and the resultant information is helpful in the cost analysis of maintenance to allow for prudent and informed decision making with regards to the mode of maintenance of analyzers.</abstract><cop>Germany</cop><pub>De Gruyter</pub><pmid>30089095</pmid><doi>10.1515/cclm-2018-0569</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0235-063X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6621
ispartof Clinical chemistry and laboratory medicine, 2018-11, Vol.56 (12), p.2067-2071
issn 1434-6621
1437-4331
language eng
recordid cdi_proquest_miscellaneous_2086258011
source MEDLINE; De Gruyter journals
subjects analyzer
Analyzers
Automation
Cost analysis
Decision analysis
Decision making
Dental implants
Dental prosthetics
Dental restorative materials
Failure
Failure analysis
failure rate
Failure rates
Hematology
Hematology - instrumentation
Humans
Life cycles
Maintenance
Mechanical engineering
Medical equipment
prediction
Predictions
Predictive Value of Tests
Probability distribution
Prospective Studies
Statistical analysis
Surgical implants
Weibull distribution
title Failure rate prediction of equipment: can Weibull distribution be applied to automated hematology analyzers?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20rate%20prediction%20of%20equipment:%20can%20Weibull%20distribution%20be%20applied%20to%20automated%20hematology%20analyzers?&rft.jtitle=Clinical%20chemistry%20and%20laboratory%20medicine&rft.au=Verma,%20Alekh&rft.date=2018-11-27&rft.volume=56&rft.issue=12&rft.spage=2067&rft.epage=2071&rft.pages=2067-2071&rft.issn=1434-6621&rft.eissn=1437-4331&rft_id=info:doi/10.1515/cclm-2018-0569&rft_dat=%3Cproquest_cross%3E2086258011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2208652681&rft_id=info:pmid/30089095&rfr_iscdi=true