Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis

Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biology 2006-04, Vol.13 (4), p.453-460
Hauptverfasser: Gallimore, Andrew R., Stark, Christian B.W., Bhatt, Apoorva, Harvey, Barbara M., Demydchuk, Yuliya, Bolanos-Garcia, Victor, Fowler, Daniel J., Staunton, James, Leadlay, Peter F., Spencer, Jonathan B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 4
container_start_page 453
container_title Chemistry & biology
container_volume 13
creator Gallimore, Andrew R.
Stark, Christian B.W.
Bhatt, Apoorva
Harvey, Barbara M.
Demydchuk, Yuliya
Bolanos-Garcia, Victor
Fowler, Daniel J.
Staunton, James
Leadlay, Peter F.
Spencer, Jonathan B.
description Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9- epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.
doi_str_mv 10.1016/j.chembiol.2006.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20862575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074552106000858</els_id><sourcerecordid>20862575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</originalsourceid><addsrcrecordid>eNqFkN9rFDEQx4Motlb_hZIn3_bM5Ndu3rSlrUJFKfoc95KJzbGb1GSvcP-9Oe-kj4WBDF8-k2E-hJwDWwED_WGzcvc4r2OeVpwxvWLQSrwgpzD0pgPB4GXrWS87pTickDe1bhhjMBj9mpyA1oJzNZySX1eP0WNySEMudLlHepcnpDn86-ecLugNJqw0Jvo9TztscaF3Mf2m17nM4xJzon5b9sHXnDDVBl7EXHepkTXWt-RVGKeK747vGfl5ffXj8nN3--3my-Wn285JLZaOrw0KEJKDd_2gjXQGwtAyqQz60SsdFDcBAgoWhEfDUUsphUMDQslenJH3h38fSv6zxbrYOVaH0zQmzNtqORs0V71qoD6AruRaCwb7UOI8lp0FZvdu7cb-d2v3bi2DVqINnh83bNcz-qexo8wGfDwA2O58jFhsdXHv1seCbrE-x-d2_AV6Po3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20862575</pqid></control><display><type>article</type><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</creator><creatorcontrib>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</creatorcontrib><description>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9- epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.</description><identifier>ISSN: 1074-5521</identifier><identifier>EISSN: 1879-1301</identifier><identifier>DOI: 10.1016/j.chembiol.2006.01.013</identifier><identifier>PMID: 16632258</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Base Sequence ; CHEMBIO ; DNA, Bacterial - genetics ; Epoxide Hydrolases - chemistry ; Epoxide Hydrolases - genetics ; Epoxide Hydrolases - metabolism ; Gene Deletion ; Genes, Bacterial ; MICROBIO ; Models, Molecular ; Molecular Sequence Data ; Monensin - biosynthesis ; Monensin - chemistry ; Rhodococcus - enzymology ; Rhodococcus erythropolis ; Scattering, Radiation ; Sequence Homology, Amino Acid ; Species Specificity ; Streptomyces - enzymology ; Streptomyces - genetics ; Streptomyces - metabolism</subject><ispartof>Chemistry &amp; biology, 2006-04, Vol.13 (4), p.453-460</ispartof><rights>2006 Elsevier Ltd</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</citedby><cites>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chembiol.2006.01.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16632258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallimore, Andrew R.</creatorcontrib><creatorcontrib>Stark, Christian B.W.</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Harvey, Barbara M.</creatorcontrib><creatorcontrib>Demydchuk, Yuliya</creatorcontrib><creatorcontrib>Bolanos-Garcia, Victor</creatorcontrib><creatorcontrib>Fowler, Daniel J.</creatorcontrib><creatorcontrib>Staunton, James</creatorcontrib><creatorcontrib>Leadlay, Peter F.</creatorcontrib><creatorcontrib>Spencer, Jonathan B.</creatorcontrib><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><title>Chemistry &amp; biology</title><addtitle>Chem Biol</addtitle><description>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9- epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Base Sequence</subject><subject>CHEMBIO</subject><subject>DNA, Bacterial - genetics</subject><subject>Epoxide Hydrolases - chemistry</subject><subject>Epoxide Hydrolases - genetics</subject><subject>Epoxide Hydrolases - metabolism</subject><subject>Gene Deletion</subject><subject>Genes, Bacterial</subject><subject>MICROBIO</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monensin - biosynthesis</subject><subject>Monensin - chemistry</subject><subject>Rhodococcus - enzymology</subject><subject>Rhodococcus erythropolis</subject><subject>Scattering, Radiation</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><issn>1074-5521</issn><issn>1879-1301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9rFDEQx4Motlb_hZIn3_bM5Ndu3rSlrUJFKfoc95KJzbGb1GSvcP-9Oe-kj4WBDF8-k2E-hJwDWwED_WGzcvc4r2OeVpwxvWLQSrwgpzD0pgPB4GXrWS87pTickDe1bhhjMBj9mpyA1oJzNZySX1eP0WNySEMudLlHepcnpDn86-ecLugNJqw0Jvo9TztscaF3Mf2m17nM4xJzon5b9sHXnDDVBl7EXHepkTXWt-RVGKeK747vGfl5ffXj8nN3--3my-Wn285JLZaOrw0KEJKDd_2gjXQGwtAyqQz60SsdFDcBAgoWhEfDUUsphUMDQslenJH3h38fSv6zxbrYOVaH0zQmzNtqORs0V71qoD6AruRaCwb7UOI8lp0FZvdu7cb-d2v3bi2DVqINnh83bNcz-qexo8wGfDwA2O58jFhsdXHv1seCbrE-x-d2_AV6Po3j</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Gallimore, Andrew R.</creator><creator>Stark, Christian B.W.</creator><creator>Bhatt, Apoorva</creator><creator>Harvey, Barbara M.</creator><creator>Demydchuk, Yuliya</creator><creator>Bolanos-Garcia, Victor</creator><creator>Fowler, Daniel J.</creator><creator>Staunton, James</creator><creator>Leadlay, Peter F.</creator><creator>Spencer, Jonathan B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20060401</creationdate><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><author>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Base Sequence</topic><topic>CHEMBIO</topic><topic>DNA, Bacterial - genetics</topic><topic>Epoxide Hydrolases - chemistry</topic><topic>Epoxide Hydrolases - genetics</topic><topic>Epoxide Hydrolases - metabolism</topic><topic>Gene Deletion</topic><topic>Genes, Bacterial</topic><topic>MICROBIO</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monensin - biosynthesis</topic><topic>Monensin - chemistry</topic><topic>Rhodococcus - enzymology</topic><topic>Rhodococcus erythropolis</topic><topic>Scattering, Radiation</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallimore, Andrew R.</creatorcontrib><creatorcontrib>Stark, Christian B.W.</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Harvey, Barbara M.</creatorcontrib><creatorcontrib>Demydchuk, Yuliya</creatorcontrib><creatorcontrib>Bolanos-Garcia, Victor</creatorcontrib><creatorcontrib>Fowler, Daniel J.</creatorcontrib><creatorcontrib>Staunton, James</creatorcontrib><creatorcontrib>Leadlay, Peter F.</creatorcontrib><creatorcontrib>Spencer, Jonathan B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Chemistry &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallimore, Andrew R.</au><au>Stark, Christian B.W.</au><au>Bhatt, Apoorva</au><au>Harvey, Barbara M.</au><au>Demydchuk, Yuliya</au><au>Bolanos-Garcia, Victor</au><au>Fowler, Daniel J.</au><au>Staunton, James</au><au>Leadlay, Peter F.</au><au>Spencer, Jonathan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</atitle><jtitle>Chemistry &amp; biology</jtitle><addtitle>Chem Biol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>13</volume><issue>4</issue><spage>453</spage><epage>460</epage><pages>453-460</pages><issn>1074-5521</issn><eissn>1879-1301</eissn><abstract>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9- epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16632258</pmid><doi>10.1016/j.chembiol.2006.01.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-5521
ispartof Chemistry & biology, 2006-04, Vol.13 (4), p.453-460
issn 1074-5521
1879-1301
language eng
recordid cdi_proquest_miscellaneous_20862575
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacterial Proteins - chemistry
Base Sequence
CHEMBIO
DNA, Bacterial - genetics
Epoxide Hydrolases - chemistry
Epoxide Hydrolases - genetics
Epoxide Hydrolases - metabolism
Gene Deletion
Genes, Bacterial
MICROBIO
Models, Molecular
Molecular Sequence Data
Monensin - biosynthesis
Monensin - chemistry
Rhodococcus - enzymology
Rhodococcus erythropolis
Scattering, Radiation
Sequence Homology, Amino Acid
Species Specificity
Streptomyces - enzymology
Streptomyces - genetics
Streptomyces - metabolism
title Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20the%20Role%20of%20the%20monB%20Genes%20in%20Polyether%20Ring%20Formation%20during%20Monensin%20Biosynthesis&rft.jtitle=Chemistry%20&%20biology&rft.au=Gallimore,%20Andrew%20R.&rft.date=2006-04-01&rft.volume=13&rft.issue=4&rft.spage=453&rft.epage=460&rft.pages=453-460&rft.issn=1074-5521&rft.eissn=1879-1301&rft_id=info:doi/10.1016/j.chembiol.2006.01.013&rft_dat=%3Cproquest_cross%3E20862575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20862575&rft_id=info:pmid/16632258&rft_els_id=S1074552106000858&rfr_iscdi=true