Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis
Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the monBI and monBII genes from the monensin biosynthetic gene cluster gave strains that produ...
Gespeichert in:
Veröffentlicht in: | Chemistry & biology 2006-04, Vol.13 (4), p.453-460 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 4 |
container_start_page | 453 |
container_title | Chemistry & biology |
container_volume | 13 |
creator | Gallimore, Andrew R. Stark, Christian B.W. Bhatt, Apoorva Harvey, Barbara M. Demydchuk, Yuliya Bolanos-Garcia, Victor Fowler, Daniel J. Staunton, James Leadlay, Peter F. Spencer, Jonathan B. |
description | Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the
monBI and
monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-
epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from
Rhodococcus erythropolis. |
doi_str_mv | 10.1016/j.chembiol.2006.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20862575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074552106000858</els_id><sourcerecordid>20862575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</originalsourceid><addsrcrecordid>eNqFkN9rFDEQx4Motlb_hZIn3_bM5Ndu3rSlrUJFKfoc95KJzbGb1GSvcP-9Oe-kj4WBDF8-k2E-hJwDWwED_WGzcvc4r2OeVpwxvWLQSrwgpzD0pgPB4GXrWS87pTickDe1bhhjMBj9mpyA1oJzNZySX1eP0WNySEMudLlHepcnpDn86-ecLugNJqw0Jvo9TztscaF3Mf2m17nM4xJzon5b9sHXnDDVBl7EXHepkTXWt-RVGKeK747vGfl5ffXj8nN3--3my-Wn285JLZaOrw0KEJKDd_2gjXQGwtAyqQz60SsdFDcBAgoWhEfDUUsphUMDQslenJH3h38fSv6zxbrYOVaH0zQmzNtqORs0V71qoD6AruRaCwb7UOI8lp0FZvdu7cb-d2v3bi2DVqINnh83bNcz-qexo8wGfDwA2O58jFhsdXHv1seCbrE-x-d2_AV6Po3j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20862575</pqid></control><display><type>article</type><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</creator><creatorcontrib>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</creatorcontrib><description>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the
monBI and
monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-
epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from
Rhodococcus erythropolis.</description><identifier>ISSN: 1074-5521</identifier><identifier>EISSN: 1879-1301</identifier><identifier>DOI: 10.1016/j.chembiol.2006.01.013</identifier><identifier>PMID: 16632258</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Base Sequence ; CHEMBIO ; DNA, Bacterial - genetics ; Epoxide Hydrolases - chemistry ; Epoxide Hydrolases - genetics ; Epoxide Hydrolases - metabolism ; Gene Deletion ; Genes, Bacterial ; MICROBIO ; Models, Molecular ; Molecular Sequence Data ; Monensin - biosynthesis ; Monensin - chemistry ; Rhodococcus - enzymology ; Rhodococcus erythropolis ; Scattering, Radiation ; Sequence Homology, Amino Acid ; Species Specificity ; Streptomyces - enzymology ; Streptomyces - genetics ; Streptomyces - metabolism</subject><ispartof>Chemistry & biology, 2006-04, Vol.13 (4), p.453-460</ispartof><rights>2006 Elsevier Ltd</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</citedby><cites>FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chembiol.2006.01.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16632258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallimore, Andrew R.</creatorcontrib><creatorcontrib>Stark, Christian B.W.</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Harvey, Barbara M.</creatorcontrib><creatorcontrib>Demydchuk, Yuliya</creatorcontrib><creatorcontrib>Bolanos-Garcia, Victor</creatorcontrib><creatorcontrib>Fowler, Daniel J.</creatorcontrib><creatorcontrib>Staunton, James</creatorcontrib><creatorcontrib>Leadlay, Peter F.</creatorcontrib><creatorcontrib>Spencer, Jonathan B.</creatorcontrib><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><title>Chemistry & biology</title><addtitle>Chem Biol</addtitle><description>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the
monBI and
monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-
epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from
Rhodococcus erythropolis.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Base Sequence</subject><subject>CHEMBIO</subject><subject>DNA, Bacterial - genetics</subject><subject>Epoxide Hydrolases - chemistry</subject><subject>Epoxide Hydrolases - genetics</subject><subject>Epoxide Hydrolases - metabolism</subject><subject>Gene Deletion</subject><subject>Genes, Bacterial</subject><subject>MICROBIO</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Monensin - biosynthesis</subject><subject>Monensin - chemistry</subject><subject>Rhodococcus - enzymology</subject><subject>Rhodococcus erythropolis</subject><subject>Scattering, Radiation</subject><subject>Sequence Homology, Amino Acid</subject><subject>Species Specificity</subject><subject>Streptomyces - enzymology</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><issn>1074-5521</issn><issn>1879-1301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkN9rFDEQx4Motlb_hZIn3_bM5Ndu3rSlrUJFKfoc95KJzbGb1GSvcP-9Oe-kj4WBDF8-k2E-hJwDWwED_WGzcvc4r2OeVpwxvWLQSrwgpzD0pgPB4GXrWS87pTickDe1bhhjMBj9mpyA1oJzNZySX1eP0WNySEMudLlHepcnpDn86-ecLugNJqw0Jvo9TztscaF3Mf2m17nM4xJzon5b9sHXnDDVBl7EXHepkTXWt-RVGKeK747vGfl5ffXj8nN3--3my-Wn285JLZaOrw0KEJKDd_2gjXQGwtAyqQz60SsdFDcBAgoWhEfDUUsphUMDQslenJH3h38fSv6zxbrYOVaH0zQmzNtqORs0V71qoD6AruRaCwb7UOI8lp0FZvdu7cb-d2v3bi2DVqINnh83bNcz-qexo8wGfDwA2O58jFhsdXHv1seCbrE-x-d2_AV6Po3j</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Gallimore, Andrew R.</creator><creator>Stark, Christian B.W.</creator><creator>Bhatt, Apoorva</creator><creator>Harvey, Barbara M.</creator><creator>Demydchuk, Yuliya</creator><creator>Bolanos-Garcia, Victor</creator><creator>Fowler, Daniel J.</creator><creator>Staunton, James</creator><creator>Leadlay, Peter F.</creator><creator>Spencer, Jonathan B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20060401</creationdate><title>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</title><author>Gallimore, Andrew R. ; Stark, Christian B.W. ; Bhatt, Apoorva ; Harvey, Barbara M. ; Demydchuk, Yuliya ; Bolanos-Garcia, Victor ; Fowler, Daniel J. ; Staunton, James ; Leadlay, Peter F. ; Spencer, Jonathan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-2b9e313421dc78694c91f89e3459edad56f529f1fe30f3de92e64443ce9135473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Base Sequence</topic><topic>CHEMBIO</topic><topic>DNA, Bacterial - genetics</topic><topic>Epoxide Hydrolases - chemistry</topic><topic>Epoxide Hydrolases - genetics</topic><topic>Epoxide Hydrolases - metabolism</topic><topic>Gene Deletion</topic><topic>Genes, Bacterial</topic><topic>MICROBIO</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Monensin - biosynthesis</topic><topic>Monensin - chemistry</topic><topic>Rhodococcus - enzymology</topic><topic>Rhodococcus erythropolis</topic><topic>Scattering, Radiation</topic><topic>Sequence Homology, Amino Acid</topic><topic>Species Specificity</topic><topic>Streptomyces - enzymology</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallimore, Andrew R.</creatorcontrib><creatorcontrib>Stark, Christian B.W.</creatorcontrib><creatorcontrib>Bhatt, Apoorva</creatorcontrib><creatorcontrib>Harvey, Barbara M.</creatorcontrib><creatorcontrib>Demydchuk, Yuliya</creatorcontrib><creatorcontrib>Bolanos-Garcia, Victor</creatorcontrib><creatorcontrib>Fowler, Daniel J.</creatorcontrib><creatorcontrib>Staunton, James</creatorcontrib><creatorcontrib>Leadlay, Peter F.</creatorcontrib><creatorcontrib>Spencer, Jonathan B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Chemistry & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallimore, Andrew R.</au><au>Stark, Christian B.W.</au><au>Bhatt, Apoorva</au><au>Harvey, Barbara M.</au><au>Demydchuk, Yuliya</au><au>Bolanos-Garcia, Victor</au><au>Fowler, Daniel J.</au><au>Staunton, James</au><au>Leadlay, Peter F.</au><au>Spencer, Jonathan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis</atitle><jtitle>Chemistry & biology</jtitle><addtitle>Chem Biol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>13</volume><issue>4</issue><spage>453</spage><epage>460</epage><pages>453-460</pages><issn>1074-5521</issn><eissn>1879-1301</eissn><abstract>Ionophoric polyethers are produced by the exquisitely stereoselective oxidative cyclization of a linear polyketide, probably via a triepoxide intermediate. We report here that deletion of either or both of the
monBI and
monBII genes from the monensin biosynthetic gene cluster gave strains that produced, in place of monensins A and B, a mixture of C-3-demethylmonensins and a number of minor components, including C-9-
epi-monensin A. All the minor components were efficiently converted into monensins by subsequent acid treatment. These data strongly suggest that epoxide ring opening and concomitant polyether ring formation are catalyzed by the MonB enzymes, rather than by the enzyme MonCII as previously thought. Consistent with this, homology modeling shows that the structure of MonB-type enzymes closely resembles the recently determined structure of limonene-1,2-epoxide hydrolase from
Rhodococcus erythropolis.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>16632258</pmid><doi>10.1016/j.chembiol.2006.01.013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-5521 |
ispartof | Chemistry & biology, 2006-04, Vol.13 (4), p.453-460 |
issn | 1074-5521 1879-1301 |
language | eng |
recordid | cdi_proquest_miscellaneous_20862575 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Bacterial Proteins - chemistry Base Sequence CHEMBIO DNA, Bacterial - genetics Epoxide Hydrolases - chemistry Epoxide Hydrolases - genetics Epoxide Hydrolases - metabolism Gene Deletion Genes, Bacterial MICROBIO Models, Molecular Molecular Sequence Data Monensin - biosynthesis Monensin - chemistry Rhodococcus - enzymology Rhodococcus erythropolis Scattering, Radiation Sequence Homology, Amino Acid Species Specificity Streptomyces - enzymology Streptomyces - genetics Streptomyces - metabolism |
title | Evidence for the Role of the monB Genes in Polyether Ring Formation during Monensin Biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20the%20Role%20of%20the%20monB%20Genes%20in%20Polyether%20Ring%20Formation%20during%20Monensin%20Biosynthesis&rft.jtitle=Chemistry%20&%20biology&rft.au=Gallimore,%20Andrew%20R.&rft.date=2006-04-01&rft.volume=13&rft.issue=4&rft.spage=453&rft.epage=460&rft.pages=453-460&rft.issn=1074-5521&rft.eissn=1879-1301&rft_id=info:doi/10.1016/j.chembiol.2006.01.013&rft_dat=%3Cproquest_cross%3E20862575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20862575&rft_id=info:pmid/16632258&rft_els_id=S1074552106000858&rfr_iscdi=true |