Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones

The aim of this study is to investigate the suitability of various numerical schemes and turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three-dimensional steady governing equations for incompressible turbulent flow inside a cyclone were solved numericall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current science (Bangalore) 2008-05, Vol.94 (10), p.1273-1278
Hauptverfasser: Kaya, F., Karagoz, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1278
container_issue 10
container_start_page 1273
container_title Current science (Bangalore)
container_volume 94
creator Kaya, F.
Karagoz, I.
description The aim of this study is to investigate the suitability of various numerical schemes and turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three-dimensional steady governing equations for incompressible turbulent flow inside a cyclone were solved numerically using Fluent CFD (computational fluid dynamics) code. The Reynolds stress turbulence model, the Standard κ–ε and the RNG κ–ε turbulence models together with various combinations of numerical schemes are used to obtain axial and tangential velocity profiles, pressure drop and turbulent quantities. Computational results were compared with experimental and numerical values given in the literature, so as to evaluate the performance of the numerical schemes and turbulent models. Comparison of CFD results with experimental data shows that the Reynolds Stress turbulence model yields a reasonably good prediction. Results obtained from the numerical tests have demonstrated that the use of the Presto interpolation scheme for pressure, the Simplec algorithm for pressure–velocity coupling and the quadratic upstream interpolation for convective kinetics (quick) scheme for momentum variables gives satisfactory results for highly swirling flows in cyclones.
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20855830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24100235</jstor_id><sourcerecordid>24100235</sourcerecordid><originalsourceid>FETCH-LOGICAL-j208t-48f115479a6d3c7c4eb18060780ad78d977f636de03ea07e2d356e5a710a47033</originalsourceid><addsrcrecordid>eNot0M1KxDAUBeAuFBxHH0HIyl3hpmmadCmDfzCgCwV3JZPeTlPSZMxtGfr2jo6rs_k4B85FtgLgPBe65lfZNdEAUIgC6lX29Y6pi2k0wSIzwfiFHLHYsTCPmJw1npHtcURiLrDe7Xu_MDq65F3Ys2lOu9ljmFjn4_GP2MX6GJBussvOeMLb_1xnn0-PH5uXfPv2_Lp52OZDAXrKS91xLktVm6oVVtkSd1xDBUqDaZVua6W6SlQtgkADCotWyAqlURxMqUCIdXZ_7j2k-D0jTc3oyKL3JmCcqTmtSKkFnODdGQ40xdQckhtNWpqi5L9nSPEDIhtYeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20855830</pqid></control><display><type>article</type><title>Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Kaya, F. ; Karagoz, I.</creator><creatorcontrib>Kaya, F. ; Karagoz, I.</creatorcontrib><description>The aim of this study is to investigate the suitability of various numerical schemes and turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three-dimensional steady governing equations for incompressible turbulent flow inside a cyclone were solved numerically using Fluent CFD (computational fluid dynamics) code. The Reynolds stress turbulence model, the Standard κ–ε and the RNG κ–ε turbulence models together with various combinations of numerical schemes are used to obtain axial and tangential velocity profiles, pressure drop and turbulent quantities. Computational results were compared with experimental and numerical values given in the literature, so as to evaluate the performance of the numerical schemes and turbulent models. Comparison of CFD results with experimental data shows that the Reynolds Stress turbulence model yields a reasonably good prediction. Results obtained from the numerical tests have demonstrated that the use of the Presto interpolation scheme for pressure, the Simplec algorithm for pressure–velocity coupling and the quadratic upstream interpolation for convective kinetics (quick) scheme for momentum variables gives satisfactory results for highly swirling flows in cyclones.</description><identifier>ISSN: 0011-3891</identifier><language>eng</language><publisher>Current Science Association</publisher><subject>Charge flow devices ; Cyclones ; Experimental data ; Flow velocity ; Inlets ; Numerical schemes ; Pressure reduction ; Reynolds stress ; Turbulence models ; Velocity distribution</subject><ispartof>Current science (Bangalore), 2008-05, Vol.94 (10), p.1273-1278</ispartof><rights>2008 Current Science Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24100235$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24100235$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,57998,58231</link.rule.ids></links><search><creatorcontrib>Kaya, F.</creatorcontrib><creatorcontrib>Karagoz, I.</creatorcontrib><title>Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones</title><title>Current science (Bangalore)</title><description>The aim of this study is to investigate the suitability of various numerical schemes and turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three-dimensional steady governing equations for incompressible turbulent flow inside a cyclone were solved numerically using Fluent CFD (computational fluid dynamics) code. The Reynolds stress turbulence model, the Standard κ–ε and the RNG κ–ε turbulence models together with various combinations of numerical schemes are used to obtain axial and tangential velocity profiles, pressure drop and turbulent quantities. Computational results were compared with experimental and numerical values given in the literature, so as to evaluate the performance of the numerical schemes and turbulent models. Comparison of CFD results with experimental data shows that the Reynolds Stress turbulence model yields a reasonably good prediction. Results obtained from the numerical tests have demonstrated that the use of the Presto interpolation scheme for pressure, the Simplec algorithm for pressure–velocity coupling and the quadratic upstream interpolation for convective kinetics (quick) scheme for momentum variables gives satisfactory results for highly swirling flows in cyclones.</description><subject>Charge flow devices</subject><subject>Cyclones</subject><subject>Experimental data</subject><subject>Flow velocity</subject><subject>Inlets</subject><subject>Numerical schemes</subject><subject>Pressure reduction</subject><subject>Reynolds stress</subject><subject>Turbulence models</subject><subject>Velocity distribution</subject><issn>0011-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNot0M1KxDAUBeAuFBxHH0HIyl3hpmmadCmDfzCgCwV3JZPeTlPSZMxtGfr2jo6rs_k4B85FtgLgPBe65lfZNdEAUIgC6lX29Y6pi2k0wSIzwfiFHLHYsTCPmJw1npHtcURiLrDe7Xu_MDq65F3Ys2lOu9ljmFjn4_GP2MX6GJBussvOeMLb_1xnn0-PH5uXfPv2_Lp52OZDAXrKS91xLktVm6oVVtkSd1xDBUqDaZVua6W6SlQtgkADCotWyAqlURxMqUCIdXZ_7j2k-D0jTc3oyKL3JmCcqTmtSKkFnODdGQ40xdQckhtNWpqi5L9nSPEDIhtYeQ</recordid><startdate>20080525</startdate><enddate>20080525</enddate><creator>Kaya, F.</creator><creator>Karagoz, I.</creator><general>Current Science Association</general><scope>7TM</scope></search><sort><creationdate>20080525</creationdate><title>Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones</title><author>Kaya, F. ; Karagoz, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j208t-48f115479a6d3c7c4eb18060780ad78d977f636de03ea07e2d356e5a710a47033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Charge flow devices</topic><topic>Cyclones</topic><topic>Experimental data</topic><topic>Flow velocity</topic><topic>Inlets</topic><topic>Numerical schemes</topic><topic>Pressure reduction</topic><topic>Reynolds stress</topic><topic>Turbulence models</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaya, F.</creatorcontrib><creatorcontrib>Karagoz, I.</creatorcontrib><collection>Nucleic Acids Abstracts</collection><jtitle>Current science (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaya, F.</au><au>Karagoz, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones</atitle><jtitle>Current science (Bangalore)</jtitle><date>2008-05-25</date><risdate>2008</risdate><volume>94</volume><issue>10</issue><spage>1273</spage><epage>1278</epage><pages>1273-1278</pages><issn>0011-3891</issn><abstract>The aim of this study is to investigate the suitability of various numerical schemes and turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three-dimensional steady governing equations for incompressible turbulent flow inside a cyclone were solved numerically using Fluent CFD (computational fluid dynamics) code. The Reynolds stress turbulence model, the Standard κ–ε and the RNG κ–ε turbulence models together with various combinations of numerical schemes are used to obtain axial and tangential velocity profiles, pressure drop and turbulent quantities. Computational results were compared with experimental and numerical values given in the literature, so as to evaluate the performance of the numerical schemes and turbulent models. Comparison of CFD results with experimental data shows that the Reynolds Stress turbulence model yields a reasonably good prediction. Results obtained from the numerical tests have demonstrated that the use of the Presto interpolation scheme for pressure, the Simplec algorithm for pressure–velocity coupling and the quadratic upstream interpolation for convective kinetics (quick) scheme for momentum variables gives satisfactory results for highly swirling flows in cyclones.</abstract><pub>Current Science Association</pub><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-3891
ispartof Current science (Bangalore), 2008-05, Vol.94 (10), p.1273-1278
issn 0011-3891
language eng
recordid cdi_proquest_miscellaneous_20855830
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Charge flow devices
Cyclones
Experimental data
Flow velocity
Inlets
Numerical schemes
Pressure reduction
Reynolds stress
Turbulence models
Velocity distribution
title Performance analysis of numerical schemes in highly swirling turbulent flows in cyclones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20numerical%20schemes%20in%20highly%20swirling%20turbulent%20flows%20in%20cyclones&rft.jtitle=Current%20science%20(Bangalore)&rft.au=Kaya,%20F.&rft.date=2008-05-25&rft.volume=94&rft.issue=10&rft.spage=1273&rft.epage=1278&rft.pages=1273-1278&rft.issn=0011-3891&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E24100235%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20855830&rft_id=info:pmid/&rft_jstor_id=24100235&rfr_iscdi=true