Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats

Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2018-09, Vol.27 (18), p.3727-3743
Hauptverfasser: Field, Kenneth A., Sewall, Brent J., Prokkola, Jenni M., Turner, Gregory G., Gagnon, Marianne F., Lilley, Thomas M., Paul White, J., Johnson, Joseph S., Hauer, Christopher L., Reeder, DeeAnn M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3743
container_issue 18
container_start_page 3727
container_title Molecular ecology
container_volume 27
creator Field, Kenneth A.
Sewall, Brent J.
Prokkola, Jenni M.
Turner, Gregory G.
Gagnon, Marianne F.
Lilley, Thomas M.
Paul White, J.
Johnson, Joseph S.
Hauer, Christopher L.
Reeder, DeeAnn M.
description Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.
doi_str_mv 10.1111/mec.14827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084936223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084936223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</originalsourceid><addsrcrecordid>eNp10E1LwzAcx_Egis7pwTcgAS966JaHJmuPMuYDKF4UxEtJ2n-2StvUJEX27s3c9CCYSy6ffAk_hM4omdB4pi2UE5pmbLaHRpRLkbA8fd1HI5JLllCS8SN07P07IZQzIQ7RESckI3kqRuhtYQyUAVuDg3W9ddh2eGV9wMGpzpeu7oNt6xI78L3tPPjosMJm6Jaqwb0KK7uEDtfxVa3BdSrU3RJrFfwJOjCq8XC6u8fo5WbxPL9LHp5u7-fXD0nJs2yWMAFVqlXFDYeKy5wJzRRhjHMJVTUDwrnWGVBZSg0546AE03KWAxhppNR8jC633d7ZjwF8KNral9A0qgM7-IKRLM253BTH6OIPfbdD_HMTFSUpFbngIqqrrSqd9d6BKXpXt8qtC0qKzeBFHLz4Hjza811x0C1Uv_Jn4QimW_BZN7D-v1Q8Lubb5BcGLopR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104159535</pqid></control><display><type>article</type><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</creator><creatorcontrib>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</creatorcontrib><description>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14827</identifier><identifier>PMID: 30080945</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal diseases ; Dormancy ; Energy conservation ; Fungi ; Gene expression ; Genes ; Hibernation ; Immune response ; Inflammation ; Metabolism ; Myotis lucifugus ; pathogenesis ; Pathogens ; Ribonucleic acid ; RNA ; thermoregulatory behaviour ; Torpor ; Transcription ; transcriptomics ; Water conservation ; White-nose syndrome</subject><ispartof>Molecular ecology, 2018-09, Vol.27 (18), p.3727-3743</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</citedby><cites>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</cites><orcidid>0000-0001-7417-4386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14827$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14827$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30080945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Field, Kenneth A.</creatorcontrib><creatorcontrib>Sewall, Brent J.</creatorcontrib><creatorcontrib>Prokkola, Jenni M.</creatorcontrib><creatorcontrib>Turner, Gregory G.</creatorcontrib><creatorcontrib>Gagnon, Marianne F.</creatorcontrib><creatorcontrib>Lilley, Thomas M.</creatorcontrib><creatorcontrib>Paul White, J.</creatorcontrib><creatorcontrib>Johnson, Joseph S.</creatorcontrib><creatorcontrib>Hauer, Christopher L.</creatorcontrib><creatorcontrib>Reeder, DeeAnn M.</creatorcontrib><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</description><subject>Animal diseases</subject><subject>Dormancy</subject><subject>Energy conservation</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hibernation</subject><subject>Immune response</subject><subject>Inflammation</subject><subject>Metabolism</subject><subject>Myotis lucifugus</subject><subject>pathogenesis</subject><subject>Pathogens</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>thermoregulatory behaviour</subject><subject>Torpor</subject><subject>Transcription</subject><subject>transcriptomics</subject><subject>Water conservation</subject><subject>White-nose syndrome</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAcx_Egis7pwTcgAS966JaHJmuPMuYDKF4UxEtJ2n-2StvUJEX27s3c9CCYSy6ffAk_hM4omdB4pi2UE5pmbLaHRpRLkbA8fd1HI5JLllCS8SN07P07IZQzIQ7RESckI3kqRuhtYQyUAVuDg3W9ddh2eGV9wMGpzpeu7oNt6xI78L3tPPjosMJm6Jaqwb0KK7uEDtfxVa3BdSrU3RJrFfwJOjCq8XC6u8fo5WbxPL9LHp5u7-fXD0nJs2yWMAFVqlXFDYeKy5wJzRRhjHMJVTUDwrnWGVBZSg0546AE03KWAxhppNR8jC633d7ZjwF8KNral9A0qgM7-IKRLM253BTH6OIPfbdD_HMTFSUpFbngIqqrrSqd9d6BKXpXt8qtC0qKzeBFHLz4Hjza811x0C1Uv_Jn4QimW_BZN7D-v1Q8Lubb5BcGLopR</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Field, Kenneth A.</creator><creator>Sewall, Brent J.</creator><creator>Prokkola, Jenni M.</creator><creator>Turner, Gregory G.</creator><creator>Gagnon, Marianne F.</creator><creator>Lilley, Thomas M.</creator><creator>Paul White, J.</creator><creator>Johnson, Joseph S.</creator><creator>Hauer, Christopher L.</creator><creator>Reeder, DeeAnn M.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7417-4386</orcidid></search><sort><creationdate>201809</creationdate><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><author>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal diseases</topic><topic>Dormancy</topic><topic>Energy conservation</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hibernation</topic><topic>Immune response</topic><topic>Inflammation</topic><topic>Metabolism</topic><topic>Myotis lucifugus</topic><topic>pathogenesis</topic><topic>Pathogens</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>thermoregulatory behaviour</topic><topic>Torpor</topic><topic>Transcription</topic><topic>transcriptomics</topic><topic>Water conservation</topic><topic>White-nose syndrome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Field, Kenneth A.</creatorcontrib><creatorcontrib>Sewall, Brent J.</creatorcontrib><creatorcontrib>Prokkola, Jenni M.</creatorcontrib><creatorcontrib>Turner, Gregory G.</creatorcontrib><creatorcontrib>Gagnon, Marianne F.</creatorcontrib><creatorcontrib>Lilley, Thomas M.</creatorcontrib><creatorcontrib>Paul White, J.</creatorcontrib><creatorcontrib>Johnson, Joseph S.</creatorcontrib><creatorcontrib>Hauer, Christopher L.</creatorcontrib><creatorcontrib>Reeder, DeeAnn M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Field, Kenneth A.</au><au>Sewall, Brent J.</au><au>Prokkola, Jenni M.</au><au>Turner, Gregory G.</au><au>Gagnon, Marianne F.</au><au>Lilley, Thomas M.</au><au>Paul White, J.</au><au>Johnson, Joseph S.</au><au>Hauer, Christopher L.</au><au>Reeder, DeeAnn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>27</volume><issue>18</issue><spage>3727</spage><epage>3743</epage><pages>3727-3743</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30080945</pmid><doi>10.1111/mec.14827</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7417-4386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2018-09, Vol.27 (18), p.3727-3743
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_2084936223
source Wiley Online Library Journals Frontfile Complete
subjects Animal diseases
Dormancy
Energy conservation
Fungi
Gene expression
Genes
Hibernation
Immune response
Inflammation
Metabolism
Myotis lucifugus
pathogenesis
Pathogens
Ribonucleic acid
RNA
thermoregulatory behaviour
Torpor
Transcription
transcriptomics
Water conservation
White-nose syndrome
title Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20torpor%20on%20host%20transcriptomic%20responses%20to%20a%20fungal%20pathogen%20in%20hibernating%20bats&rft.jtitle=Molecular%20ecology&rft.au=Field,%20Kenneth%20A.&rft.date=2018-09&rft.volume=27&rft.issue=18&rft.spage=3727&rft.epage=3743&rft.pages=3727-3743&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14827&rft_dat=%3Cproquest_cross%3E2084936223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104159535&rft_id=info:pmid/30080945&rfr_iscdi=true