Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats
Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and t...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2018-09, Vol.27 (18), p.3727-3743 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3743 |
---|---|
container_issue | 18 |
container_start_page | 3727 |
container_title | Molecular ecology |
container_volume | 27 |
creator | Field, Kenneth A. Sewall, Brent J. Prokkola, Jenni M. Turner, Gregory G. Gagnon, Marianne F. Lilley, Thomas M. Paul White, J. Johnson, Joseph S. Hauer, Christopher L. Reeder, DeeAnn M. |
description | Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy. |
doi_str_mv | 10.1111/mec.14827 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084936223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084936223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</originalsourceid><addsrcrecordid>eNp10E1LwzAcx_Egis7pwTcgAS966JaHJmuPMuYDKF4UxEtJ2n-2StvUJEX27s3c9CCYSy6ffAk_hM4omdB4pi2UE5pmbLaHRpRLkbA8fd1HI5JLllCS8SN07P07IZQzIQ7RESckI3kqRuhtYQyUAVuDg3W9ddh2eGV9wMGpzpeu7oNt6xI78L3tPPjosMJm6Jaqwb0KK7uEDtfxVa3BdSrU3RJrFfwJOjCq8XC6u8fo5WbxPL9LHp5u7-fXD0nJs2yWMAFVqlXFDYeKy5wJzRRhjHMJVTUDwrnWGVBZSg0546AE03KWAxhppNR8jC633d7ZjwF8KNral9A0qgM7-IKRLM253BTH6OIPfbdD_HMTFSUpFbngIqqrrSqd9d6BKXpXt8qtC0qKzeBFHLz4Hjza811x0C1Uv_Jn4QimW_BZN7D-v1Q8Lubb5BcGLopR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104159535</pqid></control><display><type>article</type><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</creator><creatorcontrib>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</creatorcontrib><description>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14827</identifier><identifier>PMID: 30080945</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal diseases ; Dormancy ; Energy conservation ; Fungi ; Gene expression ; Genes ; Hibernation ; Immune response ; Inflammation ; Metabolism ; Myotis lucifugus ; pathogenesis ; Pathogens ; Ribonucleic acid ; RNA ; thermoregulatory behaviour ; Torpor ; Transcription ; transcriptomics ; Water conservation ; White-nose syndrome</subject><ispartof>Molecular ecology, 2018-09, Vol.27 (18), p.3727-3743</ispartof><rights>2018 John Wiley & Sons Ltd</rights><rights>2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</citedby><cites>FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</cites><orcidid>0000-0001-7417-4386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14827$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14827$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30080945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Field, Kenneth A.</creatorcontrib><creatorcontrib>Sewall, Brent J.</creatorcontrib><creatorcontrib>Prokkola, Jenni M.</creatorcontrib><creatorcontrib>Turner, Gregory G.</creatorcontrib><creatorcontrib>Gagnon, Marianne F.</creatorcontrib><creatorcontrib>Lilley, Thomas M.</creatorcontrib><creatorcontrib>Paul White, J.</creatorcontrib><creatorcontrib>Johnson, Joseph S.</creatorcontrib><creatorcontrib>Hauer, Christopher L.</creatorcontrib><creatorcontrib>Reeder, DeeAnn M.</creatorcontrib><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</description><subject>Animal diseases</subject><subject>Dormancy</subject><subject>Energy conservation</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Hibernation</subject><subject>Immune response</subject><subject>Inflammation</subject><subject>Metabolism</subject><subject>Myotis lucifugus</subject><subject>pathogenesis</subject><subject>Pathogens</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>thermoregulatory behaviour</subject><subject>Torpor</subject><subject>Transcription</subject><subject>transcriptomics</subject><subject>Water conservation</subject><subject>White-nose syndrome</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAcx_Egis7pwTcgAS966JaHJmuPMuYDKF4UxEtJ2n-2StvUJEX27s3c9CCYSy6ffAk_hM4omdB4pi2UE5pmbLaHRpRLkbA8fd1HI5JLllCS8SN07P07IZQzIQ7RESckI3kqRuhtYQyUAVuDg3W9ddh2eGV9wMGpzpeu7oNt6xI78L3tPPjosMJm6Jaqwb0KK7uEDtfxVa3BdSrU3RJrFfwJOjCq8XC6u8fo5WbxPL9LHp5u7-fXD0nJs2yWMAFVqlXFDYeKy5wJzRRhjHMJVTUDwrnWGVBZSg0546AE03KWAxhppNR8jC633d7ZjwF8KNral9A0qgM7-IKRLM253BTH6OIPfbdD_HMTFSUpFbngIqqrrSqd9d6BKXpXt8qtC0qKzeBFHLz4Hjza811x0C1Uv_Jn4QimW_BZN7D-v1Q8Lubb5BcGLopR</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Field, Kenneth A.</creator><creator>Sewall, Brent J.</creator><creator>Prokkola, Jenni M.</creator><creator>Turner, Gregory G.</creator><creator>Gagnon, Marianne F.</creator><creator>Lilley, Thomas M.</creator><creator>Paul White, J.</creator><creator>Johnson, Joseph S.</creator><creator>Hauer, Christopher L.</creator><creator>Reeder, DeeAnn M.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7417-4386</orcidid></search><sort><creationdate>201809</creationdate><title>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</title><author>Field, Kenneth A. ; Sewall, Brent J. ; Prokkola, Jenni M. ; Turner, Gregory G. ; Gagnon, Marianne F. ; Lilley, Thomas M. ; Paul White, J. ; Johnson, Joseph S. ; Hauer, Christopher L. ; Reeder, DeeAnn M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-25ed4bad3f3ed36925b2a022336edd7e033bb8e16c6be923ea52b679eef6f66b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal diseases</topic><topic>Dormancy</topic><topic>Energy conservation</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Hibernation</topic><topic>Immune response</topic><topic>Inflammation</topic><topic>Metabolism</topic><topic>Myotis lucifugus</topic><topic>pathogenesis</topic><topic>Pathogens</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>thermoregulatory behaviour</topic><topic>Torpor</topic><topic>Transcription</topic><topic>transcriptomics</topic><topic>Water conservation</topic><topic>White-nose syndrome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Field, Kenneth A.</creatorcontrib><creatorcontrib>Sewall, Brent J.</creatorcontrib><creatorcontrib>Prokkola, Jenni M.</creatorcontrib><creatorcontrib>Turner, Gregory G.</creatorcontrib><creatorcontrib>Gagnon, Marianne F.</creatorcontrib><creatorcontrib>Lilley, Thomas M.</creatorcontrib><creatorcontrib>Paul White, J.</creatorcontrib><creatorcontrib>Johnson, Joseph S.</creatorcontrib><creatorcontrib>Hauer, Christopher L.</creatorcontrib><creatorcontrib>Reeder, DeeAnn M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Field, Kenneth A.</au><au>Sewall, Brent J.</au><au>Prokkola, Jenni M.</au><au>Turner, Gregory G.</au><au>Gagnon, Marianne F.</au><au>Lilley, Thomas M.</au><au>Paul White, J.</au><au>Johnson, Joseph S.</au><au>Hauer, Christopher L.</au><au>Reeder, DeeAnn M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2018-09</date><risdate>2018</risdate><volume>27</volume><issue>18</issue><spage>3727</spage><epage>3743</epage><pages>3727-3743</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Hibernation, the use of prolonged torpor to depress metabolism, is employed by mammals to conserve resources during extended periods of extreme temperatures and/or resource limitation. Mammalian hibernators arouse to euthermy periodically during torpor for reasons that are not well understood, and these arousals may facilitate immune processes. To determine whether arousals enable host responses to pathogens, we used dual RNA‐Seq and a paired sampling approach to examine gene expression in a hibernating bat, the little brown myotis (Myotis lucifugus). During torpor, transcript levels differed in only a few genes between uninfected wing tissue and adjacent tissue infected with Pseudogymnoascus destructans, the fungal pathogen that causes white‐nose syndrome. Within 70–80 min after emergence from torpor, large changes in gene expression were observed due to local infection, particularly in genes involved in pro‐inflammatory host responses to fungal pathogens, but also in many genes involved in immune responses and metabolism. These results support the hypothesis that torpor is a period of relative immune dormancy and arousals allow for local immune responses in infected tissues during hibernation. Host–pathogen interactions were also found to regulate gene expression in the pathogen differently depending on the torpor state of the host. Hibernating species must balance the benefits of energy and water conservation achieved during torpor with the costs of decreased immune competence. Interbout arousals allow hibernators to optimize these, and other, trade‐offs during prolonged hibernation by enabling host responses to pathogens within brief, periodic episodes of euthermy.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30080945</pmid><doi>10.1111/mec.14827</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7417-4386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2018-09, Vol.27 (18), p.3727-3743 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_2084936223 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Animal diseases Dormancy Energy conservation Fungi Gene expression Genes Hibernation Immune response Inflammation Metabolism Myotis lucifugus pathogenesis Pathogens Ribonucleic acid RNA thermoregulatory behaviour Torpor Transcription transcriptomics Water conservation White-nose syndrome |
title | Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20torpor%20on%20host%20transcriptomic%20responses%20to%20a%20fungal%20pathogen%20in%20hibernating%20bats&rft.jtitle=Molecular%20ecology&rft.au=Field,%20Kenneth%20A.&rft.date=2018-09&rft.volume=27&rft.issue=18&rft.spage=3727&rft.epage=3743&rft.pages=3727-3743&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14827&rft_dat=%3Cproquest_cross%3E2084936223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2104159535&rft_id=info:pmid/30080945&rfr_iscdi=true |