Generation and post-injury integration of human spinal cord neural stem cells

Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2018-09, Vol.15 (9), p.723-731
Hauptverfasser: Kumamaru, Hiromi, Kadoya, Ken, Adler, Andrew F., Takashima, Yoshio, Graham, Lori, Coppola, Giovanni, Tuszynski, Mark H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 9
container_start_page 723
container_title Nature methods
container_volume 15
creator Kumamaru, Hiromi
Kadoya, Ken
Adler, Andrew F.
Takashima, Yoshio
Graham, Lori
Coppola, Giovanni
Tuszynski, Mark H.
description Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for ‘replacement’ strategies in several spinal cord disorders. Spinal cord neural stem cells are generated from human pluripotent stem cells via a chemically defined, xeno-free method, and exhibit efficient and functional engraftment in rat spinal cord lesions.
doi_str_mv 10.1038/s41592-018-0074-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084918355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572839434</galeid><sourcerecordid>A572839434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-c4bde1425dab9824254c5b86e216111632927cf72ab22d86fc52fa9ae7e44fa63</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq0KVGDbH8AFReqll4A_E_uIEKVIi7jA2XKc8darxN7ayYF_j6Nd-qUiHzyaed5XM3oROif4kmAmrzInQtEaE1lj3PKafUCnRHBZtwSLo7caK3KCznLeYswYp-IjOmEYSyqVOkUPdxAgmcnHUJnQV7uYp9qH7ZxeKh8m2Bxm0VU_5tGEKu98MENlY-qrAHMqdZ5grCwMQ_6Ejp0ZMnw-_Cv0_O326eZ7vX68u7-5XtdWYDHVlnc9kLJKbzolaSm4FZ1sgJKGENIwqmhrXUtNR2kvG2cFdUYZaIFzZxq2Ql_3vrsUf86QJz36vGxgAsQ5a4olV0QyIQr65R90G-dUTlgo1SrFWfsHtTEDaB9cnJKxi6m-Fi2VrGC8UJf_ocrrYfQ2BnC-9P8SkL3ApphzAqd3yY8mvWiC9RKh3keoS4R6iVCzork4LDx3I_S_FG-ZFYDugVxGYQPp90Xvu74CG3ekIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097994375</pqid></control><display><type>article</type><title>Generation and post-injury integration of human spinal cord neural stem cells</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kumamaru, Hiromi ; Kadoya, Ken ; Adler, Andrew F. ; Takashima, Yoshio ; Graham, Lori ; Coppola, Giovanni ; Tuszynski, Mark H.</creator><creatorcontrib>Kumamaru, Hiromi ; Kadoya, Ken ; Adler, Andrew F. ; Takashima, Yoshio ; Graham, Lori ; Coppola, Giovanni ; Tuszynski, Mark H.</creatorcontrib><description>Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for ‘replacement’ strategies in several spinal cord disorders. Spinal cord neural stem cells are generated from human pluripotent stem cells via a chemically defined, xeno-free method, and exhibit efficient and functional engraftment in rat spinal cord lesions.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-018-0074-3</identifier><identifier>PMID: 30082899</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378 ; 631/532/2182 ; Axon guidance ; Axons ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering/Biotechnology ; Biomedical materials ; Cell Lineage ; Circuits ; Grafts ; Humans ; Injuries ; Life Sciences ; Neural circuitry ; Neural networks ; Neural stem cells ; Neural Stem Cells - pathology ; Neurons ; Patient outcomes ; Pluripotency ; Pluripotent Stem Cells - pathology ; Proteomics ; Pyramidal tracts ; Regeneration ; Spinal cord ; Spinal Cord - pathology ; Spinal cord injuries ; Spinal Cord Injuries - pathology ; Stem cells</subject><ispartof>Nature methods, 2018-09, Vol.15 (9), p.723-731</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-c4bde1425dab9824254c5b86e216111632927cf72ab22d86fc52fa9ae7e44fa63</citedby><cites>FETCH-LOGICAL-c505t-c4bde1425dab9824254c5b86e216111632927cf72ab22d86fc52fa9ae7e44fa63</cites><orcidid>0000-0001-7135-5528 ; 0000-0003-4182-1481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-018-0074-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-018-0074-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30082899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumamaru, Hiromi</creatorcontrib><creatorcontrib>Kadoya, Ken</creatorcontrib><creatorcontrib>Adler, Andrew F.</creatorcontrib><creatorcontrib>Takashima, Yoshio</creatorcontrib><creatorcontrib>Graham, Lori</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>Tuszynski, Mark H.</creatorcontrib><title>Generation and post-injury integration of human spinal cord neural stem cells</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for ‘replacement’ strategies in several spinal cord disorders. Spinal cord neural stem cells are generated from human pluripotent stem cells via a chemically defined, xeno-free method, and exhibit efficient and functional engraftment in rat spinal cord lesions.</description><subject>631/378</subject><subject>631/532/2182</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedical materials</subject><subject>Cell Lineage</subject><subject>Circuits</subject><subject>Grafts</subject><subject>Humans</subject><subject>Injuries</subject><subject>Life Sciences</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - pathology</subject><subject>Neurons</subject><subject>Patient outcomes</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - pathology</subject><subject>Proteomics</subject><subject>Pyramidal tracts</subject><subject>Regeneration</subject><subject>Spinal cord</subject><subject>Spinal Cord - pathology</subject><subject>Spinal cord injuries</subject><subject>Spinal Cord Injuries - pathology</subject><subject>Stem cells</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1P3DAQhq0KVGDbH8AFReqll4A_E_uIEKVIi7jA2XKc8darxN7ayYF_j6Nd-qUiHzyaed5XM3oROif4kmAmrzInQtEaE1lj3PKafUCnRHBZtwSLo7caK3KCznLeYswYp-IjOmEYSyqVOkUPdxAgmcnHUJnQV7uYp9qH7ZxeKh8m2Bxm0VU_5tGEKu98MENlY-qrAHMqdZ5grCwMQ_6Ejp0ZMnw-_Cv0_O326eZ7vX68u7-5XtdWYDHVlnc9kLJKbzolaSm4FZ1sgJKGENIwqmhrXUtNR2kvG2cFdUYZaIFzZxq2Ql_3vrsUf86QJz36vGxgAsQ5a4olV0QyIQr65R90G-dUTlgo1SrFWfsHtTEDaB9cnJKxi6m-Fi2VrGC8UJf_ocrrYfQ2BnC-9P8SkL3ApphzAqd3yY8mvWiC9RKh3keoS4R6iVCzork4LDx3I_S_FG-ZFYDugVxGYQPp90Xvu74CG3ekIg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Kumamaru, Hiromi</creator><creator>Kadoya, Ken</creator><creator>Adler, Andrew F.</creator><creator>Takashima, Yoshio</creator><creator>Graham, Lori</creator><creator>Coppola, Giovanni</creator><creator>Tuszynski, Mark H.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7135-5528</orcidid><orcidid>https://orcid.org/0000-0003-4182-1481</orcidid></search><sort><creationdate>20180901</creationdate><title>Generation and post-injury integration of human spinal cord neural stem cells</title><author>Kumamaru, Hiromi ; Kadoya, Ken ; Adler, Andrew F. ; Takashima, Yoshio ; Graham, Lori ; Coppola, Giovanni ; Tuszynski, Mark H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-c4bde1425dab9824254c5b86e216111632927cf72ab22d86fc52fa9ae7e44fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378</topic><topic>631/532/2182</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedical materials</topic><topic>Cell Lineage</topic><topic>Circuits</topic><topic>Grafts</topic><topic>Humans</topic><topic>Injuries</topic><topic>Life Sciences</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - pathology</topic><topic>Neurons</topic><topic>Patient outcomes</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - pathology</topic><topic>Proteomics</topic><topic>Pyramidal tracts</topic><topic>Regeneration</topic><topic>Spinal cord</topic><topic>Spinal Cord - pathology</topic><topic>Spinal cord injuries</topic><topic>Spinal Cord Injuries - pathology</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumamaru, Hiromi</creatorcontrib><creatorcontrib>Kadoya, Ken</creatorcontrib><creatorcontrib>Adler, Andrew F.</creatorcontrib><creatorcontrib>Takashima, Yoshio</creatorcontrib><creatorcontrib>Graham, Lori</creatorcontrib><creatorcontrib>Coppola, Giovanni</creatorcontrib><creatorcontrib>Tuszynski, Mark H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumamaru, Hiromi</au><au>Kadoya, Ken</au><au>Adler, Andrew F.</au><au>Takashima, Yoshio</au><au>Graham, Lori</au><au>Coppola, Giovanni</au><au>Tuszynski, Mark H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and post-injury integration of human spinal cord neural stem cells</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>15</volume><issue>9</issue><spage>723</spage><epage>731</epage><pages>723-731</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Spinal cord neural stem cells (NSCs) have great potential to reconstitute damaged spinal neural circuitry, but they have yet to be generated in vitro. We now report the derivation of spinal cord NSCs from human pluripotent stem cells (hPSCs). Our observations show that these spinal cord NSCs differentiate into a diverse population of spinal cord neurons occupying multiple positions along the dorso-ventral axis, and can be maintained for prolonged time periods. Grafts into injured spinal cords were rich with excitatory neurons, extended large numbers of axons over long distances, innervated their target structures, and enabled robust corticospinal regeneration. The grafts synaptically integrated into multiple host intraspinal and supraspinal systems, including the corticospinal projection, and improved functional outcomes after injury. hPSC-derived spinal cord NSCs could enable a broad range of biomedical applications for in vitro disease modeling and constitute an improved clinically translatable cell source for ‘replacement’ strategies in several spinal cord disorders. Spinal cord neural stem cells are generated from human pluripotent stem cells via a chemically defined, xeno-free method, and exhibit efficient and functional engraftment in rat spinal cord lesions.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30082899</pmid><doi>10.1038/s41592-018-0074-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7135-5528</orcidid><orcidid>https://orcid.org/0000-0003-4182-1481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2018-09, Vol.15 (9), p.723-731
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_2084918355
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/378
631/532/2182
Axon guidance
Axons
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering/Biotechnology
Biomedical materials
Cell Lineage
Circuits
Grafts
Humans
Injuries
Life Sciences
Neural circuitry
Neural networks
Neural stem cells
Neural Stem Cells - pathology
Neurons
Patient outcomes
Pluripotency
Pluripotent Stem Cells - pathology
Proteomics
Pyramidal tracts
Regeneration
Spinal cord
Spinal Cord - pathology
Spinal cord injuries
Spinal Cord Injuries - pathology
Stem cells
title Generation and post-injury integration of human spinal cord neural stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20post-injury%20integration%20of%20human%20spinal%20cord%20neural%20stem%20cells&rft.jtitle=Nature%20methods&rft.au=Kumamaru,%20Hiromi&rft.date=2018-09-01&rft.volume=15&rft.issue=9&rft.spage=723&rft.epage=731&rft.pages=723-731&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-018-0074-3&rft_dat=%3Cgale_proqu%3EA572839434%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097994375&rft_id=info:pmid/30082899&rft_galeid=A572839434&rfr_iscdi=true