Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles

By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-01, Vol.25 (3), p.806-816
Hauptverfasser: Pushkarevsky, Nikolay A., Chulanova, Elena A., Shundrin, Leonid A., Smolentsev, Anton I., Salnikov, Georgy E., Pritchina, Elena A., Genaev, Alexander M., Irtegova, Irina G., Bagryanskaya, Irina Yu, Konchenko, Sergey N., Gritsan, Nina P., Beckmann, Jens, Zibarev, Andrey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 3
container_start_page 806
container_title Chemistry : a European journal
container_volume 25
creator Pushkarevsky, Nikolay A.
Chulanova, Elena A.
Shundrin, Leonid A.
Smolentsev, Anton I.
Salnikov, Georgy E.
Pritchina, Elena A.
Genaev, Alexander M.
Irtegova, Irina G.
Bagryanskaya, Irina Yu
Konchenko, Sergey N.
Gritsan, Nina P.
Beckmann, Jens
Zibarev, Andrey V.
description By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis. Heterocyclic radical anions: Chemical reduction of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen=S, Se, Te, respectively) afforded new thermally stable radical anion (RA) salts [K(THF)]+[2].− and [K(18‐crown‐6)]+[2].− in addition to known salt [K(THF)]+[1].−, whereas RA [3].− was detected by EPR as the first Te–N π‐heterocyclic RA but not isolated; instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained (see figure).
doi_str_mv 10.1002/chem.201803465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084914018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084914018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-5c20dc86f961f56b61a4151b8a5050ce1d442cfdaaaf57792ee9cdc3df37fb763</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMoOqdXj1Lw4mGdb5ImbY861AkTwY9zSNNEK2kzmxV1J3-Cv9FfYuamghdPIS9PHt48CO1hGGIAcqQedD0kgDOgCWdrqIcZwTFNOVtHPciTNOaM5lto2_tHAMg5pZtoiwJkCYOsh8S1LCslbXTcVK7xg2h1_3h7_5pEN9LOwlg25RKpVDRy9dTqF-0jZyIywAMa6BPdzJ16kFa5e90EiZw7q_0O2jDSer27Ovvo7uz0djSOJ1fnF6PjSaySsGvMFIFSZdzkHBvGC45lghkuMsmAgdK4TBKiTCmlNCxNc6J1rkpFS0NTU6Sc9tHh0jtt3VOn_UzUlVfaWtlo13lBwodznIRQAT34gz66rm3CdoJgnhKgmC6EwyWlWud9q42YtlUt21eBQSzSi0V68ZM-PNhfabui1uUP_t06APkSeK6sfv1HJ0bj08tf-SdjfpCv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167203136</pqid></control><display><type>article</type><title>Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles</title><source>Access via Wiley Online Library</source><creator>Pushkarevsky, Nikolay A. ; Chulanova, Elena A. ; Shundrin, Leonid A. ; Smolentsev, Anton I. ; Salnikov, Georgy E. ; Pritchina, Elena A. ; Genaev, Alexander M. ; Irtegova, Irina G. ; Bagryanskaya, Irina Yu ; Konchenko, Sergey N. ; Gritsan, Nina P. ; Beckmann, Jens ; Zibarev, Andrey V.</creator><creatorcontrib>Pushkarevsky, Nikolay A. ; Chulanova, Elena A. ; Shundrin, Leonid A. ; Smolentsev, Anton I. ; Salnikov, Georgy E. ; Pritchina, Elena A. ; Genaev, Alexander M. ; Irtegova, Irina G. ; Bagryanskaya, Irina Yu ; Konchenko, Sergey N. ; Gritsan, Nina P. ; Beckmann, Jens ; Zibarev, Andrey V.</creatorcontrib><description>By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis. Heterocyclic radical anions: Chemical reduction of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen=S, Se, Te, respectively) afforded new thermally stable radical anion (RA) salts [K(THF)]+[2].− and [K(18‐crown‐6)]+[2].− in addition to known salt [K(THF)]+[1].−, whereas RA [3].− was detected by EPR as the first Te–N π‐heterocyclic RA but not isolated; instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201803465</identifier><identifier>PMID: 30084508</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Atomic properties ; chalcogens ; Chemical reduction ; Chemistry ; density functional calculations ; Electron affinity ; Electronegativity ; heterocycles ; main group elements ; Mathematical analysis ; Organic chemistry ; radical ions ; Salts ; Spectroscopy ; Spectrum analysis ; Tellurium ; Thermal stability</subject><ispartof>Chemistry : a European journal, 2019-01, Vol.25 (3), p.806-816</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-5c20dc86f961f56b61a4151b8a5050ce1d442cfdaaaf57792ee9cdc3df37fb763</citedby><cites>FETCH-LOGICAL-c4765-5c20dc86f961f56b61a4151b8a5050ce1d442cfdaaaf57792ee9cdc3df37fb763</cites><orcidid>0000-0001-7760-5540 ; 0000-0002-2263-1300 ; 0000-0002-1389-7318 ; 0000-0002-5091-2812 ; 0000-0002-8548-1821 ; 0000-0001-8668-6362 ; 0000-0001-8206-2835 ; 0000-0002-5961-423X ; 0000-0002-5775-2903 ; 0000-0001-7218-6690 ; 0000-0002-5868-9563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201803465$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201803465$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30084508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pushkarevsky, Nikolay A.</creatorcontrib><creatorcontrib>Chulanova, Elena A.</creatorcontrib><creatorcontrib>Shundrin, Leonid A.</creatorcontrib><creatorcontrib>Smolentsev, Anton I.</creatorcontrib><creatorcontrib>Salnikov, Georgy E.</creatorcontrib><creatorcontrib>Pritchina, Elena A.</creatorcontrib><creatorcontrib>Genaev, Alexander M.</creatorcontrib><creatorcontrib>Irtegova, Irina G.</creatorcontrib><creatorcontrib>Bagryanskaya, Irina Yu</creatorcontrib><creatorcontrib>Konchenko, Sergey N.</creatorcontrib><creatorcontrib>Gritsan, Nina P.</creatorcontrib><creatorcontrib>Beckmann, Jens</creatorcontrib><creatorcontrib>Zibarev, Andrey V.</creatorcontrib><title>Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis. Heterocyclic radical anions: Chemical reduction of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen=S, Se, Te, respectively) afforded new thermally stable radical anion (RA) salts [K(THF)]+[2].− and [K(18‐crown‐6)]+[2].− in addition to known salt [K(THF)]+[1].−, whereas RA [3].− was detected by EPR as the first Te–N π‐heterocyclic RA but not isolated; instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained (see figure).</description><subject>Anions</subject><subject>Atomic properties</subject><subject>chalcogens</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>density functional calculations</subject><subject>Electron affinity</subject><subject>Electronegativity</subject><subject>heterocycles</subject><subject>main group elements</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>radical ions</subject><subject>Salts</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tellurium</subject><subject>Thermal stability</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYgIMoOqdXj1Lw4mGdb5ImbY861AkTwY9zSNNEK2kzmxV1J3-Cv9FfYuamghdPIS9PHt48CO1hGGIAcqQedD0kgDOgCWdrqIcZwTFNOVtHPciTNOaM5lto2_tHAMg5pZtoiwJkCYOsh8S1LCslbXTcVK7xg2h1_3h7_5pEN9LOwlg25RKpVDRy9dTqF-0jZyIywAMa6BPdzJ16kFa5e90EiZw7q_0O2jDSer27Ovvo7uz0djSOJ1fnF6PjSaySsGvMFIFSZdzkHBvGC45lghkuMsmAgdK4TBKiTCmlNCxNc6J1rkpFS0NTU6Sc9tHh0jtt3VOn_UzUlVfaWtlo13lBwodznIRQAT34gz66rm3CdoJgnhKgmC6EwyWlWud9q42YtlUt21eBQSzSi0V68ZM-PNhfabui1uUP_t06APkSeK6sfv1HJ0bj08tf-SdjfpCv</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Pushkarevsky, Nikolay A.</creator><creator>Chulanova, Elena A.</creator><creator>Shundrin, Leonid A.</creator><creator>Smolentsev, Anton I.</creator><creator>Salnikov, Georgy E.</creator><creator>Pritchina, Elena A.</creator><creator>Genaev, Alexander M.</creator><creator>Irtegova, Irina G.</creator><creator>Bagryanskaya, Irina Yu</creator><creator>Konchenko, Sergey N.</creator><creator>Gritsan, Nina P.</creator><creator>Beckmann, Jens</creator><creator>Zibarev, Andrey V.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7760-5540</orcidid><orcidid>https://orcid.org/0000-0002-2263-1300</orcidid><orcidid>https://orcid.org/0000-0002-1389-7318</orcidid><orcidid>https://orcid.org/0000-0002-5091-2812</orcidid><orcidid>https://orcid.org/0000-0002-8548-1821</orcidid><orcidid>https://orcid.org/0000-0001-8668-6362</orcidid><orcidid>https://orcid.org/0000-0001-8206-2835</orcidid><orcidid>https://orcid.org/0000-0002-5961-423X</orcidid><orcidid>https://orcid.org/0000-0002-5775-2903</orcidid><orcidid>https://orcid.org/0000-0001-7218-6690</orcidid><orcidid>https://orcid.org/0000-0002-5868-9563</orcidid></search><sort><creationdate>20190114</creationdate><title>Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles</title><author>Pushkarevsky, Nikolay A. ; Chulanova, Elena A. ; Shundrin, Leonid A. ; Smolentsev, Anton I. ; Salnikov, Georgy E. ; Pritchina, Elena A. ; Genaev, Alexander M. ; Irtegova, Irina G. ; Bagryanskaya, Irina Yu ; Konchenko, Sergey N. ; Gritsan, Nina P. ; Beckmann, Jens ; Zibarev, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-5c20dc86f961f56b61a4151b8a5050ce1d442cfdaaaf57792ee9cdc3df37fb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anions</topic><topic>Atomic properties</topic><topic>chalcogens</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>density functional calculations</topic><topic>Electron affinity</topic><topic>Electronegativity</topic><topic>heterocycles</topic><topic>main group elements</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>radical ions</topic><topic>Salts</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tellurium</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pushkarevsky, Nikolay A.</creatorcontrib><creatorcontrib>Chulanova, Elena A.</creatorcontrib><creatorcontrib>Shundrin, Leonid A.</creatorcontrib><creatorcontrib>Smolentsev, Anton I.</creatorcontrib><creatorcontrib>Salnikov, Georgy E.</creatorcontrib><creatorcontrib>Pritchina, Elena A.</creatorcontrib><creatorcontrib>Genaev, Alexander M.</creatorcontrib><creatorcontrib>Irtegova, Irina G.</creatorcontrib><creatorcontrib>Bagryanskaya, Irina Yu</creatorcontrib><creatorcontrib>Konchenko, Sergey N.</creatorcontrib><creatorcontrib>Gritsan, Nina P.</creatorcontrib><creatorcontrib>Beckmann, Jens</creatorcontrib><creatorcontrib>Zibarev, Andrey V.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pushkarevsky, Nikolay A.</au><au>Chulanova, Elena A.</au><au>Shundrin, Leonid A.</au><au>Smolentsev, Anton I.</au><au>Salnikov, Georgy E.</au><au>Pritchina, Elena A.</au><au>Genaev, Alexander M.</au><au>Irtegova, Irina G.</au><au>Bagryanskaya, Irina Yu</au><au>Konchenko, Sergey N.</au><au>Gritsan, Nina P.</au><au>Beckmann, Jens</au><au>Zibarev, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2019-01-14</date><risdate>2019</risdate><volume>25</volume><issue>3</issue><spage>806</spage><epage>816</epage><pages>806-816</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron‐acceptor ability of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [1].− and [2].−, RA [3].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1–3 was performed and new thermally stable RA salts [K(THF)]+[2].− (8) and [K(18‐crown‐6)]+[2].− (9) were isolated in addition to known salt [K(THF)]+[1].− (7). On contact with air, RAs [1].− and [2].− underwent fast decomposition in solution with the formation of anions [ECN]−, which were isolated in the form of salts [K(18‐crown‐6)]+[ECN]− (10, E=S; 11, E=Se). In the case of 3, RA [3].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π‐heterocyclic RAs but not isolated. Instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18‐crown‐6)]+2[3‐Te4‐3]2− (13) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8–13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [3‐Te2]2− and [3‐Te4‐3]2− was studied by DFT calculations and QTAIM analysis. Heterocyclic radical anions: Chemical reduction of 2,1,3‐benzochalcogenadiazoles 1–3 (chalcogen=S, Se, Te, respectively) afforded new thermally stable radical anion (RA) salts [K(THF)]+[2].− and [K(18‐crown‐6)]+[2].− in addition to known salt [K(THF)]+[1].−, whereas RA [3].− was detected by EPR as the first Te–N π‐heterocyclic RA but not isolated; instead, salt [K(18‐crown‐6)]+2[3‐Te2]2− (12) featuring a new anionic complex with coordinate Te−Te bond was obtained (see figure).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30084508</pmid><doi>10.1002/chem.201803465</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7760-5540</orcidid><orcidid>https://orcid.org/0000-0002-2263-1300</orcidid><orcidid>https://orcid.org/0000-0002-1389-7318</orcidid><orcidid>https://orcid.org/0000-0002-5091-2812</orcidid><orcidid>https://orcid.org/0000-0002-8548-1821</orcidid><orcidid>https://orcid.org/0000-0001-8668-6362</orcidid><orcidid>https://orcid.org/0000-0001-8206-2835</orcidid><orcidid>https://orcid.org/0000-0002-5961-423X</orcidid><orcidid>https://orcid.org/0000-0002-5775-2903</orcidid><orcidid>https://orcid.org/0000-0001-7218-6690</orcidid><orcidid>https://orcid.org/0000-0002-5868-9563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-01, Vol.25 (3), p.806-816
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2084914018
source Access via Wiley Online Library
subjects Anions
Atomic properties
chalcogens
Chemical reduction
Chemistry
density functional calculations
Electron affinity
Electronegativity
heterocycles
main group elements
Mathematical analysis
Organic chemistry
radical ions
Salts
Spectroscopy
Spectrum analysis
Tellurium
Thermal stability
title Radical Anions, Radical‐Anion Salts, and Anionic Complexes of 2,1,3‐Benzochalcogenadiazoles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A17%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radical%20Anions,%20Radical%E2%80%90Anion%20Salts,%20and%20Anionic%20Complexes%20of%202,1,3%E2%80%90Benzochalcogenadiazoles&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Pushkarevsky,%20Nikolay%20A.&rft.date=2019-01-14&rft.volume=25&rft.issue=3&rft.spage=806&rft.epage=816&rft.pages=806-816&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201803465&rft_dat=%3Cproquest_cross%3E2084914018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167203136&rft_id=info:pmid/30084508&rfr_iscdi=true