Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data

The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2008-02, Vol.112 (2), p.391-402
Hauptverfasser: Rahman, M.M., Moran, M.S., Thoma, D.P., Bryant, R., Holifield Collins, C.D., Jackson, T., Orr, B.J., Tischler, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 402
container_issue 2
container_start_page 391
container_title Remote sensing of environment
container_volume 112
creator Rahman, M.M.
Moran, M.S.
Thoma, D.P.
Bryant, R.
Holifield Collins, C.D.
Jackson, T.
Orr, B.J.
Tischler, M.
description The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.
doi_str_mv 10.1016/j.rse.2006.10.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20846294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425707003008</els_id><sourcerecordid>20846294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c8a118517f3fa6ff9827554ea2332feaad2c917399924c3a3d5afef5fc6fcd1c3</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOI7-AG998tZtll7xJIMbjHjRcyiTSk-G3kw6yvx704xnT0U9vlfUe4RcM5oxysrbfeY8ZpzSMu4Z5eUJWbG6alJa0fyUrCgVeZrzojonF97vKWVFXbEV-XyFabJDm_jgDChM3Bja3YDeJzDoxI-2S_rR-jk4TIJfyD50s01haLtIgwaX2B5adIfkx867MczRqWzXQVQ0zHBJzgx0Hq_-5pp8PD68b57T7dvTy-Z-myrB6zlVNTBWF6wywkBpTFPzqihyBC4ENwiguWpYJZqm4bkSIHQBBk1hVGmUZkqsyc3x7uTGr4B-lr31CuMjA47BS07rvORNHkF2BJUbvXdo5ORiBHeQjMqlTbmXsU25tLlIsc3ouTt6MCb4tuikVxYHhdo6VLPUo_3H_Qtr0X_b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20846294</pqid></control><display><type>article</type><title>Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data</title><source>Elsevier ScienceDirect Journals</source><creator>Rahman, M.M. ; Moran, M.S. ; Thoma, D.P. ; Bryant, R. ; Holifield Collins, C.D. ; Jackson, T. ; Orr, B.J. ; Tischler, M.</creator><creatorcontrib>Rahman, M.M. ; Moran, M.S. ; Thoma, D.P. ; Bryant, R. ; Holifield Collins, C.D. ; Jackson, T. ; Orr, B.J. ; Tischler, M.</creatorcontrib><description>The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2006.10.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Active microwave ; ENVISAT-ASAR ; Integral Equation Model ; Radar ; Soil moisture ; Surface roughness</subject><ispartof>Remote sensing of environment, 2008-02, Vol.112 (2), p.391-402</ispartof><rights>2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c8a118517f3fa6ff9827554ea2332feaad2c917399924c3a3d5afef5fc6fcd1c3</citedby><cites>FETCH-LOGICAL-c328t-c8a118517f3fa6ff9827554ea2332feaad2c917399924c3a3d5afef5fc6fcd1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2006.10.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Rahman, M.M.</creatorcontrib><creatorcontrib>Moran, M.S.</creatorcontrib><creatorcontrib>Thoma, D.P.</creatorcontrib><creatorcontrib>Bryant, R.</creatorcontrib><creatorcontrib>Holifield Collins, C.D.</creatorcontrib><creatorcontrib>Jackson, T.</creatorcontrib><creatorcontrib>Orr, B.J.</creatorcontrib><creatorcontrib>Tischler, M.</creatorcontrib><title>Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data</title><title>Remote sensing of environment</title><description>The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.</description><subject>Active microwave</subject><subject>ENVISAT-ASAR</subject><subject>Integral Equation Model</subject><subject>Radar</subject><subject>Soil moisture</subject><subject>Surface roughness</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kElLBDEQhYMoOI7-AG998tZtll7xJIMbjHjRcyiTSk-G3kw6yvx704xnT0U9vlfUe4RcM5oxysrbfeY8ZpzSMu4Z5eUJWbG6alJa0fyUrCgVeZrzojonF97vKWVFXbEV-XyFabJDm_jgDChM3Bja3YDeJzDoxI-2S_rR-jk4TIJfyD50s01haLtIgwaX2B5adIfkx867MczRqWzXQVQ0zHBJzgx0Hq_-5pp8PD68b57T7dvTy-Z-myrB6zlVNTBWF6wywkBpTFPzqihyBC4ENwiguWpYJZqm4bkSIHQBBk1hVGmUZkqsyc3x7uTGr4B-lr31CuMjA47BS07rvORNHkF2BJUbvXdo5ORiBHeQjMqlTbmXsU25tLlIsc3ouTt6MCb4tuikVxYHhdo6VLPUo_3H_Qtr0X_b</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Rahman, M.M.</creator><creator>Moran, M.S.</creator><creator>Thoma, D.P.</creator><creator>Bryant, R.</creator><creator>Holifield Collins, C.D.</creator><creator>Jackson, T.</creator><creator>Orr, B.J.</creator><creator>Tischler, M.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20080215</creationdate><title>Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data</title><author>Rahman, M.M. ; Moran, M.S. ; Thoma, D.P. ; Bryant, R. ; Holifield Collins, C.D. ; Jackson, T. ; Orr, B.J. ; Tischler, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c8a118517f3fa6ff9827554ea2332feaad2c917399924c3a3d5afef5fc6fcd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active microwave</topic><topic>ENVISAT-ASAR</topic><topic>Integral Equation Model</topic><topic>Radar</topic><topic>Soil moisture</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, M.M.</creatorcontrib><creatorcontrib>Moran, M.S.</creatorcontrib><creatorcontrib>Thoma, D.P.</creatorcontrib><creatorcontrib>Bryant, R.</creatorcontrib><creatorcontrib>Holifield Collins, C.D.</creatorcontrib><creatorcontrib>Jackson, T.</creatorcontrib><creatorcontrib>Orr, B.J.</creatorcontrib><creatorcontrib>Tischler, M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, M.M.</au><au>Moran, M.S.</au><au>Thoma, D.P.</au><au>Bryant, R.</au><au>Holifield Collins, C.D.</au><au>Jackson, T.</au><au>Orr, B.J.</au><au>Tischler, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data</atitle><jtitle>Remote sensing of environment</jtitle><date>2008-02-15</date><risdate>2008</risdate><volume>112</volume><issue>2</issue><spage>391</spage><epage>402</epage><pages>391-402</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by using the multi-angle approach.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2006.10.026</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2008-02, Vol.112 (2), p.391-402
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_20846294
source Elsevier ScienceDirect Journals
subjects Active microwave
ENVISAT-ASAR
Integral Equation Model
Radar
Soil moisture
Surface roughness
title Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20surface%20roughness%20and%20soil%20moisture%20using%20multi-angle%20radar%20imagery%20without%20ancillary%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Rahman,%20M.M.&rft.date=2008-02-15&rft.volume=112&rft.issue=2&rft.spage=391&rft.epage=402&rft.pages=391-402&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2006.10.026&rft_dat=%3Cproquest_cross%3E20846294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20846294&rft_id=info:pmid/&rft_els_id=S0034425707003008&rfr_iscdi=true