Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control
Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the func...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-09, Vol.30 (38), p.e1707017-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e1707017 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Ren, Zhaohui Wu, Mengjiao Chen, Xing Li, Wei Li, Ming Wang, Fang Tian, He Chen, Junze Xie, Yanwu Mai, Jiangquan Li, Xiang Lu, Xinhui Lu, Yunhao Zhang, Hua Tendeloo, Gustaaf Zhang, Ze Han, Gaorong |
description | Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low‐temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid–liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
TiO2/PbTiO3, SrTiO3/PbTiO3, and BiFeO3/PbTiO3 heterostructures with atomically sharp interfaces are synthesized by a low‐temperature hydrothermal method (100–200 °C). This heteroepitaxial growth is driven by a strong electrostatic force originating from the polar surfaces of PbTiO3 single‐domain nanoplates. Ferroelectric polarization screening leads to the selective growth and saturation thickness, accompanied with a charge transfer and accumulation near the interface. |
doi_str_mv | 10.1002/adma.201707017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084344574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2105021686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-6b5c421daf76cdec15d84fee9e55bec972612ac6dd9cc9222e370edbdd1b347c3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOo5uXUrBjZuOJ2kuzXKYiwqKG12HNDmFSqcd047O7HwH39AnMTJewI2bc-Dw_T-Hj5ATCiMKwC6sX9gRA6pAxbFDBlQwmnLQYpcMQGci1ZLnB-Sw6x4BQEuQ--QgA8iB5fmAzGc1uj60XW_7yiXzNjh8f32bhuoZm-RuXXlMrrDH0OKy6u16k5RtSK6beCmtw2TSNjFdH5G90tYdHn_tIXmYz-4nV-nN3eX1ZHyTukxlKpWFcJxRb0slnUdHhc95iahRiAKdVkxSZp30XjunGWOYKUBfeE-LjCuXDcn5tncZ2qcVdr1ZVJ3DurYNtqvOMMh5xrlQPKJnf9DHdhWa-J1hFAQwKnMZqdGWctFBF7A0y1AtbNgYCubTsPk0bH4Mx8DpV-2qWKD_wb-VRkBvgZeqxs0_dWY8vR3_ln8AH1iIrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105021686</pqid></control><display><type>article</type><title>Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ren, Zhaohui ; Wu, Mengjiao ; Chen, Xing ; Li, Wei ; Li, Ming ; Wang, Fang ; Tian, He ; Chen, Junze ; Xie, Yanwu ; Mai, Jiangquan ; Li, Xiang ; Lu, Xinhui ; Lu, Yunhao ; Zhang, Hua ; Tendeloo, Gustaaf ; Zhang, Ze ; Han, Gaorong</creator><creatorcontrib>Ren, Zhaohui ; Wu, Mengjiao ; Chen, Xing ; Li, Wei ; Li, Ming ; Wang, Fang ; Tian, He ; Chen, Junze ; Xie, Yanwu ; Mai, Jiangquan ; Li, Xiang ; Lu, Xinhui ; Lu, Yunhao ; Zhang, Hua ; Tendeloo, Gustaaf ; Zhang, Ze ; Han, Gaorong</creatorcontrib><description>Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low‐temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid–liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
TiO2/PbTiO3, SrTiO3/PbTiO3, and BiFeO3/PbTiO3 heterostructures with atomically sharp interfaces are synthesized by a low‐temperature hydrothermal method (100–200 °C). This heteroepitaxial growth is driven by a strong electrostatic force originating from the polar surfaces of PbTiO3 single‐domain nanoplates. Ferroelectric polarization screening leads to the selective growth and saturation thickness, accompanied with a charge transfer and accumulation near the interface.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201707017</identifier><identifier>PMID: 30080288</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Charge transfer ; electrostatic force ; Ferroelectric materials ; ferroelectric polarization screening ; Ferroelectricity ; Heterostructures ; interfaces ; oxide heterostructures ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2018-09, Vol.30 (38), p.e1707017-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-6b5c421daf76cdec15d84fee9e55bec972612ac6dd9cc9222e370edbdd1b347c3</citedby><cites>FETCH-LOGICAL-c3737-6b5c421daf76cdec15d84fee9e55bec972612ac6dd9cc9222e370edbdd1b347c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201707017$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201707017$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30080288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Zhaohui</creatorcontrib><creatorcontrib>Wu, Mengjiao</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Chen, Junze</creatorcontrib><creatorcontrib>Xie, Yanwu</creatorcontrib><creatorcontrib>Mai, Jiangquan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Lu, Yunhao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Tendeloo, Gustaaf</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Han, Gaorong</creatorcontrib><title>Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low‐temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid–liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
TiO2/PbTiO3, SrTiO3/PbTiO3, and BiFeO3/PbTiO3 heterostructures with atomically sharp interfaces are synthesized by a low‐temperature hydrothermal method (100–200 °C). This heteroepitaxial growth is driven by a strong electrostatic force originating from the polar surfaces of PbTiO3 single‐domain nanoplates. Ferroelectric polarization screening leads to the selective growth and saturation thickness, accompanied with a charge transfer and accumulation near the interface.</description><subject>Accumulation</subject><subject>Charge transfer</subject><subject>electrostatic force</subject><subject>Ferroelectric materials</subject><subject>ferroelectric polarization screening</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>interfaces</subject><subject>oxide heterostructures</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOo5uXUrBjZuOJ2kuzXKYiwqKG12HNDmFSqcd047O7HwH39AnMTJewI2bc-Dw_T-Hj5ATCiMKwC6sX9gRA6pAxbFDBlQwmnLQYpcMQGci1ZLnB-Sw6x4BQEuQ--QgA8iB5fmAzGc1uj60XW_7yiXzNjh8f32bhuoZm-RuXXlMrrDH0OKy6u16k5RtSK6beCmtw2TSNjFdH5G90tYdHn_tIXmYz-4nV-nN3eX1ZHyTukxlKpWFcJxRb0slnUdHhc95iahRiAKdVkxSZp30XjunGWOYKUBfeE-LjCuXDcn5tncZ2qcVdr1ZVJ3DurYNtqvOMMh5xrlQPKJnf9DHdhWa-J1hFAQwKnMZqdGWctFBF7A0y1AtbNgYCubTsPk0bH4Mx8DpV-2qWKD_wb-VRkBvgZeqxs0_dWY8vR3_ln8AH1iIrQ</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Ren, Zhaohui</creator><creator>Wu, Mengjiao</creator><creator>Chen, Xing</creator><creator>Li, Wei</creator><creator>Li, Ming</creator><creator>Wang, Fang</creator><creator>Tian, He</creator><creator>Chen, Junze</creator><creator>Xie, Yanwu</creator><creator>Mai, Jiangquan</creator><creator>Li, Xiang</creator><creator>Lu, Xinhui</creator><creator>Lu, Yunhao</creator><creator>Zhang, Hua</creator><creator>Tendeloo, Gustaaf</creator><creator>Zhang, Ze</creator><creator>Han, Gaorong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control</title><author>Ren, Zhaohui ; Wu, Mengjiao ; Chen, Xing ; Li, Wei ; Li, Ming ; Wang, Fang ; Tian, He ; Chen, Junze ; Xie, Yanwu ; Mai, Jiangquan ; Li, Xiang ; Lu, Xinhui ; Lu, Yunhao ; Zhang, Hua ; Tendeloo, Gustaaf ; Zhang, Ze ; Han, Gaorong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-6b5c421daf76cdec15d84fee9e55bec972612ac6dd9cc9222e370edbdd1b347c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Charge transfer</topic><topic>electrostatic force</topic><topic>Ferroelectric materials</topic><topic>ferroelectric polarization screening</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>interfaces</topic><topic>oxide heterostructures</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhaohui</creatorcontrib><creatorcontrib>Wu, Mengjiao</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Tian, He</creatorcontrib><creatorcontrib>Chen, Junze</creatorcontrib><creatorcontrib>Xie, Yanwu</creatorcontrib><creatorcontrib>Mai, Jiangquan</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Lu, Yunhao</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Tendeloo, Gustaaf</creatorcontrib><creatorcontrib>Zhang, Ze</creatorcontrib><creatorcontrib>Han, Gaorong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhaohui</au><au>Wu, Mengjiao</au><au>Chen, Xing</au><au>Li, Wei</au><au>Li, Ming</au><au>Wang, Fang</au><au>Tian, He</au><au>Chen, Junze</au><au>Xie, Yanwu</au><au>Mai, Jiangquan</au><au>Li, Xiang</au><au>Lu, Xinhui</au><au>Lu, Yunhao</au><au>Zhang, Hua</au><au>Tendeloo, Gustaaf</au><au>Zhang, Ze</au><au>Han, Gaorong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-09</date><risdate>2018</risdate><volume>30</volume><issue>38</issue><spage>e1707017</spage><epage>n/a</epage><pages>e1707017-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low‐temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid–liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.
TiO2/PbTiO3, SrTiO3/PbTiO3, and BiFeO3/PbTiO3 heterostructures with atomically sharp interfaces are synthesized by a low‐temperature hydrothermal method (100–200 °C). This heteroepitaxial growth is driven by a strong electrostatic force originating from the polar surfaces of PbTiO3 single‐domain nanoplates. Ferroelectric polarization screening leads to the selective growth and saturation thickness, accompanied with a charge transfer and accumulation near the interface.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30080288</pmid><doi>10.1002/adma.201707017</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-09, Vol.30 (38), p.e1707017-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2084344574 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation Charge transfer electrostatic force Ferroelectric materials ferroelectric polarization screening Ferroelectricity Heterostructures interfaces oxide heterostructures Thickness |
title | Electrostatic Force–Driven Oxide Heteroepitaxy for Interface Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20Force%E2%80%93Driven%20Oxide%20Heteroepitaxy%20for%20Interface%20Control&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ren,%20Zhaohui&rft.date=2018-09&rft.volume=30&rft.issue=38&rft.spage=e1707017&rft.epage=n/a&rft.pages=e1707017-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201707017&rft_dat=%3Cproquest_cross%3E2105021686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2105021686&rft_id=info:pmid/30080288&rfr_iscdi=true |