role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus

Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2006-10, Vol.151 (10), p.1917-1931
Hauptverfasser: Umashankar, M, Murthy, M. R. N, Singh, S. A, Appu Rao, A. G, Savithri, H. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1931
container_issue 10
container_start_page 1917
container_title Archives of virology
container_volume 151
creator Umashankar, M
Murthy, M. R. N
Singh, S. A
Appu Rao, A. G
Savithri, H. S
description Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for mutagenesis with a view to delineate the role of interfacial ionic interactions in the subunit folding and assembly of the virus. R159A and D83A-R159A recombinant CP (rCP) mutants formed stable T = 3 capsids, indicating that the D83-R159 interfacial salt bridge is dispensable for the folding and assembly of PhMV. However, D150A and R68Q-D150A mutant rCPs were present in the insoluble fraction, suggesting that the R68-D150 interfacial salt bridge is crucial for subunit folding and assembly. Similarly, K153Q, D83A-K153Q, and H69A-K153Q mutant rCPs were present in the insoluble fraction. Interestingly, the R68Q-D150A, D83A-K153Q, and H69A-K153Q double mutant rCPs could be refolded into partially folded soluble heterogeneous aggregates of 14-16 S. The results further confirm our earlier observation that subunit folding and assembly are concerted events in PhMV.
doi_str_mv 10.1007/s00705-006-0783-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20839697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20839697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7c4b71d53d0462b407ff0fce0dd8c4de9485487e13ab7af5652c33daf66f80013</originalsourceid><addsrcrecordid>eNpdkE1rFTEUhoMo9rb1B7jRoaC72JOPSTJLKbUKBQW965DJJHbKzKTmZIT7781lLhTcJJzD874kDyFvGXxiAPoa6wEtBVAUtBGUvyA7JgWnRnfmJdmBAEmNAnNGzhEfAepCtK_JGVNacNm1O7LPaQpNis24lJAprv26jKUZ0zL6bed8qRPWoSkPoXGIYe6nwzHz4-GAbhqxmVMptaYc5vR3zCteklfRTRjenO4Lsv9y--vmK73_fvft5vM99ZKxQrWXvWZDKwaQivcSdIwQfYBhMF4OoZOmlUYHJlyvXWxVy70Qg4tKRQPAxAX5uPU-5fRnDVjsPKIP0-SWkFa0HIzoVKcrePUf-JjWvNS3Wc64UFJIqBDbIJ8TYg7RPuVxdvlgGdijcLsJt1W4PQq3vGbenYrXfg7Dc-JkuAIfToBD76aY3eJHfOYMU6JjonLvNy66ZN3vXJn9T17_CIwxLrUS_wBH4pG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212364340</pqid></control><display><type>article</type><title>role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Umashankar, M ; Murthy, M. R. N ; Singh, S. A ; Appu Rao, A. G ; Savithri, H. S</creator><creatorcontrib>Umashankar, M ; Murthy, M. R. N ; Singh, S. A ; Appu Rao, A. G ; Savithri, H. S</creatorcontrib><description>Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for mutagenesis with a view to delineate the role of interfacial ionic interactions in the subunit folding and assembly of the virus. R159A and D83A-R159A recombinant CP (rCP) mutants formed stable T = 3 capsids, indicating that the D83-R159 interfacial salt bridge is dispensable for the folding and assembly of PhMV. However, D150A and R68Q-D150A mutant rCPs were present in the insoluble fraction, suggesting that the R68-D150 interfacial salt bridge is crucial for subunit folding and assembly. Similarly, K153Q, D83A-K153Q, and H69A-K153Q mutant rCPs were present in the insoluble fraction. Interestingly, the R68Q-D150A, D83A-K153Q, and H69A-K153Q double mutant rCPs could be refolded into partially folded soluble heterogeneous aggregates of 14-16 S. The results further confirm our earlier observation that subunit folding and assembly are concerted events in PhMV.</description><identifier>ISSN: 0304-8608</identifier><identifier>EISSN: 1432-8798</identifier><identifier>DOI: 10.1007/s00705-006-0783-2</identifier><identifier>PMID: 16732495</identifier><language>eng</language><publisher>Wien: Vienna : Springer-Verlag</publisher><subject>Biological and medical sciences ; Capsid Proteins - chemistry ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; Capsid Proteins - physiology ; DNA polymerase ; E coli ; Fundamental and applied biological sciences. Psychology ; Genomes ; Ions - metabolism ; Microbiology ; Miscellaneous ; Models, Molecular ; Mutagenesis ; Mutagenesis, Site-Directed ; Physalis ; Physalis - virology ; Physalis mottle tymovirus ; Protein Folding ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Protein Subunits - physiology ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Tymovirus ; Tymovirus - chemistry ; Tymovirus - physiology ; Virology ; Virus Assembly ; Viruses</subject><ispartof>Archives of virology, 2006-10, Vol.151 (10), p.1917-1931</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7c4b71d53d0462b407ff0fce0dd8c4de9485487e13ab7af5652c33daf66f80013</citedby><cites>FETCH-LOGICAL-c411t-7c4b71d53d0462b407ff0fce0dd8c4de9485487e13ab7af5652c33daf66f80013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18163913$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16732495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Umashankar, M</creatorcontrib><creatorcontrib>Murthy, M. R. N</creatorcontrib><creatorcontrib>Singh, S. A</creatorcontrib><creatorcontrib>Appu Rao, A. G</creatorcontrib><creatorcontrib>Savithri, H. S</creatorcontrib><title>role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus</title><title>Archives of virology</title><addtitle>Arch Virol</addtitle><description>Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for mutagenesis with a view to delineate the role of interfacial ionic interactions in the subunit folding and assembly of the virus. R159A and D83A-R159A recombinant CP (rCP) mutants formed stable T = 3 capsids, indicating that the D83-R159 interfacial salt bridge is dispensable for the folding and assembly of PhMV. However, D150A and R68Q-D150A mutant rCPs were present in the insoluble fraction, suggesting that the R68-D150 interfacial salt bridge is crucial for subunit folding and assembly. Similarly, K153Q, D83A-K153Q, and H69A-K153Q mutant rCPs were present in the insoluble fraction. Interestingly, the R68Q-D150A, D83A-K153Q, and H69A-K153Q double mutant rCPs could be refolded into partially folded soluble heterogeneous aggregates of 14-16 S. The results further confirm our earlier observation that subunit folding and assembly are concerted events in PhMV.</description><subject>Biological and medical sciences</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>Capsid Proteins - physiology</subject><subject>DNA polymerase</subject><subject>E coli</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genomes</subject><subject>Ions - metabolism</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Models, Molecular</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Physalis</subject><subject>Physalis - virology</subject><subject>Physalis mottle tymovirus</subject><subject>Protein Folding</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Subunits - physiology</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Tymovirus</subject><subject>Tymovirus - chemistry</subject><subject>Tymovirus - physiology</subject><subject>Virology</subject><subject>Virus Assembly</subject><subject>Viruses</subject><issn>0304-8608</issn><issn>1432-8798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1rFTEUhoMo9rb1B7jRoaC72JOPSTJLKbUKBQW965DJJHbKzKTmZIT7781lLhTcJJzD874kDyFvGXxiAPoa6wEtBVAUtBGUvyA7JgWnRnfmJdmBAEmNAnNGzhEfAepCtK_JGVNacNm1O7LPaQpNis24lJAprv26jKUZ0zL6bed8qRPWoSkPoXGIYe6nwzHz4-GAbhqxmVMptaYc5vR3zCteklfRTRjenO4Lsv9y--vmK73_fvft5vM99ZKxQrWXvWZDKwaQivcSdIwQfYBhMF4OoZOmlUYHJlyvXWxVy70Qg4tKRQPAxAX5uPU-5fRnDVjsPKIP0-SWkFa0HIzoVKcrePUf-JjWvNS3Wc64UFJIqBDbIJ8TYg7RPuVxdvlgGdijcLsJt1W4PQq3vGbenYrXfg7Dc-JkuAIfToBD76aY3eJHfOYMU6JjonLvNy66ZN3vXJn9T17_CIwxLrUS_wBH4pG8</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Umashankar, M</creator><creator>Murthy, M. R. N</creator><creator>Singh, S. A</creator><creator>Appu Rao, A. G</creator><creator>Savithri, H. S</creator><general>Vienna : Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7T7</scope><scope>C1K</scope></search><sort><creationdate>20061001</creationdate><title>role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus</title><author>Umashankar, M ; Murthy, M. R. N ; Singh, S. A ; Appu Rao, A. G ; Savithri, H. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7c4b71d53d0462b407ff0fce0dd8c4de9485487e13ab7af5652c33daf66f80013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological and medical sciences</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>Capsid Proteins - physiology</topic><topic>DNA polymerase</topic><topic>E coli</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genomes</topic><topic>Ions - metabolism</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Models, Molecular</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Physalis</topic><topic>Physalis - virology</topic><topic>Physalis mottle tymovirus</topic><topic>Protein Folding</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Subunits - physiology</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Tymovirus</topic><topic>Tymovirus - chemistry</topic><topic>Tymovirus - physiology</topic><topic>Virology</topic><topic>Virus Assembly</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Umashankar, M</creatorcontrib><creatorcontrib>Murthy, M. R. N</creatorcontrib><creatorcontrib>Singh, S. A</creatorcontrib><creatorcontrib>Appu Rao, A. G</creatorcontrib><creatorcontrib>Savithri, H. S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Archives of virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Umashankar, M</au><au>Murthy, M. R. N</au><au>Singh, S. A</au><au>Appu Rao, A. G</au><au>Savithri, H. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus</atitle><jtitle>Archives of virology</jtitle><addtitle>Arch Virol</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>151</volume><issue>10</issue><spage>1917</spage><epage>1931</epage><pages>1917-1931</pages><issn>0304-8608</issn><eissn>1432-8798</eissn><abstract>Physalis mottle tymovirus (PhMV) is a small spherical plant virus with its RNA genome encapsidated in a protein shell made of 180 identical coat protein (CP) subunits. The amino acid residues involved in two interfacial salt bridges, Asp-83/Arg-159 and Arg-68/Asp-150 and Lys-153, were targeted for mutagenesis with a view to delineate the role of interfacial ionic interactions in the subunit folding and assembly of the virus. R159A and D83A-R159A recombinant CP (rCP) mutants formed stable T = 3 capsids, indicating that the D83-R159 interfacial salt bridge is dispensable for the folding and assembly of PhMV. However, D150A and R68Q-D150A mutant rCPs were present in the insoluble fraction, suggesting that the R68-D150 interfacial salt bridge is crucial for subunit folding and assembly. Similarly, K153Q, D83A-K153Q, and H69A-K153Q mutant rCPs were present in the insoluble fraction. Interestingly, the R68Q-D150A, D83A-K153Q, and H69A-K153Q double mutant rCPs could be refolded into partially folded soluble heterogeneous aggregates of 14-16 S. The results further confirm our earlier observation that subunit folding and assembly are concerted events in PhMV.</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Vienna : Springer-Verlag</pub><pmid>16732495</pmid><doi>10.1007/s00705-006-0783-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8608
ispartof Archives of virology, 2006-10, Vol.151 (10), p.1917-1931
issn 0304-8608
1432-8798
language eng
recordid cdi_proquest_miscellaneous_20839697
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biological and medical sciences
Capsid Proteins - chemistry
Capsid Proteins - genetics
Capsid Proteins - metabolism
Capsid Proteins - physiology
DNA polymerase
E coli
Fundamental and applied biological sciences. Psychology
Genomes
Ions - metabolism
Microbiology
Miscellaneous
Models, Molecular
Mutagenesis
Mutagenesis, Site-Directed
Physalis
Physalis - virology
Physalis mottle tymovirus
Protein Folding
Protein Subunits - chemistry
Protein Subunits - metabolism
Protein Subunits - physiology
Proteins
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Tymovirus
Tymovirus - chemistry
Tymovirus - physiology
Virology
Virus Assembly
Viruses
title role of inter-subunit ionic interactions in the assembly of Physalis mottle tymovirus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=role%20of%20inter-subunit%20ionic%20interactions%20in%20the%20assembly%20of%20Physalis%20mottle%20tymovirus&rft.jtitle=Archives%20of%20virology&rft.au=Umashankar,%20M&rft.date=2006-10-01&rft.volume=151&rft.issue=10&rft.spage=1917&rft.epage=1931&rft.pages=1917-1931&rft.issn=0304-8608&rft.eissn=1432-8798&rft_id=info:doi/10.1007/s00705-006-0783-2&rft_dat=%3Cproquest_cross%3E20839697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212364340&rft_id=info:pmid/16732495&rfr_iscdi=true