Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy

Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees ( Fagus syl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2009-09, Vol.41 (9), p.1976-1985
Hauptverfasser: Esperschütz, J., Buegger, F., Winkler, J.B., Munch, J.C., Schloter, M., Gattinger, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1985
container_issue 9
container_start_page 1976
container_title Soil biology & biochemistry
container_volume 41
creator Esperschütz, J.
Buegger, F.
Winkler, J.B.
Munch, J.C.
Schloter, M.
Gattinger, A.
description Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees ( Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO 2 atmosphere (δ 13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed.
doi_str_mv 10.1016/j.soilbio.2009.07.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20829468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038071709002442</els_id><sourcerecordid>20829468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-32e0f2e35ef02513730a95f5dacacd473bf85aee142aedbf08b69fc395025f6d3</originalsourceid><addsrcrecordid>eNqFkE2P0zAQhi0EEmXhJyD5AoJDgj_y4ZwQWu0CUhEXOFsTZ7x1SePicVaUX4-XVlw5zeV55515GHspRS2F7N7ta4phHkOslRBDLfpaCPWIbaTph0o3yjxmGyG0qUQv-6fsGdFeFKKVesN-fAkuxTHAzBPSMS6EPEeOv9YJMhIPC8875GkXfkc67jAhj56f4rrc8RHR7XhOWLg3_BbuVuJ0mu8hBwd8W7_l4DMmPsV0gMWdnrMnHmbCF5d5xb7f3ny7_lRtv378fP1hW7lGd7nSCoVXqFv0f4_stYCh9e0EDtzU9Hr0pgVE2SjAafTCjN3gnR7agvtu0lfs9XnvMcWfK1K2h0AO5xkWjCtZJYwams4UsD2DRQFRQm-PKRwgnawU9kGt3duLWvug1oreFnEl9-pSAORg9ql8F-hfWMnBNEYOhXt_5rB8ex8wWXIBF4dTSOiynWL4T9MfCMmTag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20829468</pqid></control><display><type>article</type><title>Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy</title><source>Elsevier ScienceDirect Journals</source><creator>Esperschütz, J. ; Buegger, F. ; Winkler, J.B. ; Munch, J.C. ; Schloter, M. ; Gattinger, A.</creator><creatorcontrib>Esperschütz, J. ; Buegger, F. ; Winkler, J.B. ; Munch, J.C. ; Schloter, M. ; Gattinger, A.</creatorcontrib><description>Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees ( Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO 2 atmosphere (δ 13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed.</description><identifier>ISSN: 0038-0717</identifier><identifier>EISSN: 1879-3428</identifier><identifier>DOI: 10.1016/j.soilbio.2009.07.002</identifier><identifier>CODEN: SBIOAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>13C labelling ; Agronomy. Soil science and plant productions ; Beech ; Biochemistry and biology ; Biological and medical sciences ; C dynamics ; C mic ; Chemical, physicochemical, biochemical and biological properties ; Chilling ; Dormancy ; Fagus sylvatica ; Fundamental and applied biological sciences. Psychology ; Microbial biomass ; Microbiology ; Physics, chemistry, biochemistry and biology of agricultural and forest soils ; PLFA ; Rhizodeposition ; Rhizosphere ; Soil science</subject><ispartof>Soil biology &amp; biochemistry, 2009-09, Vol.41 (9), p.1976-1985</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-32e0f2e35ef02513730a95f5dacacd473bf85aee142aedbf08b69fc395025f6d3</citedby><cites>FETCH-LOGICAL-c436t-32e0f2e35ef02513730a95f5dacacd473bf85aee142aedbf08b69fc395025f6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038071709002442$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21984819$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Esperschütz, J.</creatorcontrib><creatorcontrib>Buegger, F.</creatorcontrib><creatorcontrib>Winkler, J.B.</creatorcontrib><creatorcontrib>Munch, J.C.</creatorcontrib><creatorcontrib>Schloter, M.</creatorcontrib><creatorcontrib>Gattinger, A.</creatorcontrib><title>Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy</title><title>Soil biology &amp; biochemistry</title><description>Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees ( Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO 2 atmosphere (δ 13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed.</description><subject>13C labelling</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Beech</subject><subject>Biochemistry and biology</subject><subject>Biological and medical sciences</subject><subject>C dynamics</subject><subject>C mic</subject><subject>Chemical, physicochemical, biochemical and biological properties</subject><subject>Chilling</subject><subject>Dormancy</subject><subject>Fagus sylvatica</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Microbial biomass</subject><subject>Microbiology</subject><subject>Physics, chemistry, biochemistry and biology of agricultural and forest soils</subject><subject>PLFA</subject><subject>Rhizodeposition</subject><subject>Rhizosphere</subject><subject>Soil science</subject><issn>0038-0717</issn><issn>1879-3428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE2P0zAQhi0EEmXhJyD5AoJDgj_y4ZwQWu0CUhEXOFsTZ7x1SePicVaUX4-XVlw5zeV55515GHspRS2F7N7ta4phHkOslRBDLfpaCPWIbaTph0o3yjxmGyG0qUQv-6fsGdFeFKKVesN-fAkuxTHAzBPSMS6EPEeOv9YJMhIPC8875GkXfkc67jAhj56f4rrc8RHR7XhOWLg3_BbuVuJ0mu8hBwd8W7_l4DMmPsV0gMWdnrMnHmbCF5d5xb7f3ny7_lRtv378fP1hW7lGd7nSCoVXqFv0f4_stYCh9e0EDtzU9Hr0pgVE2SjAafTCjN3gnR7agvtu0lfs9XnvMcWfK1K2h0AO5xkWjCtZJYwams4UsD2DRQFRQm-PKRwgnawU9kGt3duLWvug1oreFnEl9-pSAORg9ql8F-hfWMnBNEYOhXt_5rB8ex8wWXIBF4dTSOiynWL4T9MfCMmTag</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Esperschütz, J.</creator><creator>Buegger, F.</creator><creator>Winkler, J.B.</creator><creator>Munch, J.C.</creator><creator>Schloter, M.</creator><creator>Gattinger, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20090901</creationdate><title>Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy</title><author>Esperschütz, J. ; Buegger, F. ; Winkler, J.B. ; Munch, J.C. ; Schloter, M. ; Gattinger, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-32e0f2e35ef02513730a95f5dacacd473bf85aee142aedbf08b69fc395025f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>13C labelling</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Beech</topic><topic>Biochemistry and biology</topic><topic>Biological and medical sciences</topic><topic>C dynamics</topic><topic>C mic</topic><topic>Chemical, physicochemical, biochemical and biological properties</topic><topic>Chilling</topic><topic>Dormancy</topic><topic>Fagus sylvatica</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Microbial biomass</topic><topic>Microbiology</topic><topic>Physics, chemistry, biochemistry and biology of agricultural and forest soils</topic><topic>PLFA</topic><topic>Rhizodeposition</topic><topic>Rhizosphere</topic><topic>Soil science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esperschütz, J.</creatorcontrib><creatorcontrib>Buegger, F.</creatorcontrib><creatorcontrib>Winkler, J.B.</creatorcontrib><creatorcontrib>Munch, J.C.</creatorcontrib><creatorcontrib>Schloter, M.</creatorcontrib><creatorcontrib>Gattinger, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Soil biology &amp; biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esperschütz, J.</au><au>Buegger, F.</au><au>Winkler, J.B.</au><au>Munch, J.C.</au><au>Schloter, M.</au><au>Gattinger, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy</atitle><jtitle>Soil biology &amp; biochemistry</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>41</volume><issue>9</issue><spage>1976</spage><epage>1985</epage><pages>1976-1985</pages><issn>0038-0717</issn><eissn>1879-3428</eissn><coden>SBIOAH</coden><abstract>Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees ( Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO 2 atmosphere (δ 13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.soilbio.2009.07.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-0717
ispartof Soil biology & biochemistry, 2009-09, Vol.41 (9), p.1976-1985
issn 0038-0717
1879-3428
language eng
recordid cdi_proquest_miscellaneous_20829468
source Elsevier ScienceDirect Journals
subjects 13C labelling
Agronomy. Soil science and plant productions
Beech
Biochemistry and biology
Biological and medical sciences
C dynamics
C mic
Chemical, physicochemical, biochemical and biological properties
Chilling
Dormancy
Fagus sylvatica
Fundamental and applied biological sciences. Psychology
Microbial biomass
Microbiology
Physics, chemistry, biochemistry and biology of agricultural and forest soils
PLFA
Rhizodeposition
Rhizosphere
Soil science
title Microbial response to exudates in the rhizosphere of young beech trees ( Fagus sylvatica L.) after dormancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20response%20to%20exudates%20in%20the%20rhizosphere%20of%20young%20beech%20trees%20(%20Fagus%20sylvatica%20L.)%20after%20dormancy&rft.jtitle=Soil%20biology%20&%20biochemistry&rft.au=Espersch%C3%BCtz,%20J.&rft.date=2009-09-01&rft.volume=41&rft.issue=9&rft.spage=1976&rft.epage=1985&rft.pages=1976-1985&rft.issn=0038-0717&rft.eissn=1879-3428&rft.coden=SBIOAH&rft_id=info:doi/10.1016/j.soilbio.2009.07.002&rft_dat=%3Cproquest_cross%3E20829468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20829468&rft_id=info:pmid/&rft_els_id=S0038071709002442&rfr_iscdi=true