Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors
Recently, nanostructured porous carbons are attracting significant interest in various important applications. However, a green and innovative method to fabricate hierarchically porous-structured carbon is still a challenge. In the present work, hierarchically porous carbon microspheres (HCMs) were...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-08, Vol.10 (34), p.28918-28927 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, nanostructured porous carbons are attracting significant interest in various important applications. However, a green and innovative method to fabricate hierarchically porous-structured carbon is still a challenge. In the present work, hierarchically porous carbon microspheres (HCMs) were prepared by pyrolyzing the chitin microspheres fabricated from a chitin/chitosan blend solution, in which chitosan was used as a forming agent of nanopores/nanochannels to construct the microspheres. The HCM displayed hierarchical porous structure and improved specific surface area of 1450 m2/g. For the application of HCM in hybrid electrode materials as supercapacitors, polyaniline (PANI) nanoclusters were further deposited on the surface of HCM. A symmetric supercapacitor based on HCM–PANI exhibited high rate capability with retaining over 64% of the capacitance as the scan rate increased from 2 to 500 mV/s. This work introduced a distinctive and green method to fabricate hierarchically porous carbon materials, having considerable application prospect for energy storage. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b05891 |