Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems
In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-cop...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2018-01, Vol.18 (17), p.2665-2674 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2674 |
---|---|
container_issue | 17 |
container_start_page | 2665 |
container_title | Lab on a chip |
container_volume | 18 |
creator | Haller, Barbara Göpfrich, Kerstin Schröter, Martin Janiesch, Jan-Willi Platzman, Ilia Spatz, Joachim P |
description | In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond. |
doi_str_mv | 10.1039/c8lc00582f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2082093587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082093587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1e91a6d2f3c3b8490d9f47ca8af76941c8d9dde019c36baf227919dda55c1c1d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlYv_gBZ8CLCarLZj-Qoi1Wh4EVvwpLNR01JNmuSPfTfG23twdMMwzMvMw8AlwjeIYjpPSeGQ1iRQh2BOSobnENE6PGhp80MnIWwgRBVZU1OwQxD2MCC4jn4aD-ZX8ucuyF6Z4wUmdXcO2UmLTTPlPOWRe2GzKnM6FGLvGchUUEPayPzjA1pYzJRc2dH5qOVQ8zCNkRpwzk4UcwEebGvC_C-fHxrn_PV69NL-7DKeVnQmCNJEatFoTDHPSkpFFSVDWeEqaamJeJEUCFkeoTjumeqKBqK0oRVFUccCbwAN7vc0buvSYbYWR24NIYN0k2hKyApIMUVaRJ6_Q_duMkP6bpEUdigsqpgom53VDIRgpeqG722zG87BLsf511LVu2v82WCr_aRU2-lOKB_kvE3PXd9Lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090714550</pqid></control><display><type>article</type><title>Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Haller, Barbara ; Göpfrich, Kerstin ; Schröter, Martin ; Janiesch, Jan-Willi ; Platzman, Ilia ; Spatz, Joachim P</creator><creatorcontrib>Haller, Barbara ; Göpfrich, Kerstin ; Schröter, Martin ; Janiesch, Jan-Willi ; Platzman, Ilia ; Spatz, Joachim P</creatorcontrib><description>In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00582f</identifier><identifier>PMID: 30070293</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Block copolymers ; Charge density ; Droplets ; Ethers - chemistry ; Fluorescence ; Fluorocarbons - chemistry ; Lab-On-A-Chip Devices ; Lipids ; Microfluidics ; Microscopy ; Organofluorine compounds ; Scanning electron microscopy ; Surface Properties ; Surface tension ; Surfactants ; Unilamellar Liposomes - chemistry ; Vesicles</subject><ispartof>Lab on a chip, 2018-01, Vol.18 (17), p.2665-2674</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1e91a6d2f3c3b8490d9f47ca8af76941c8d9dde019c36baf227919dda55c1c1d3</citedby><cites>FETCH-LOGICAL-c429t-1e91a6d2f3c3b8490d9f47ca8af76941c8d9dde019c36baf227919dda55c1c1d3</cites><orcidid>0000-0003-3419-9807 ; 0000-0003-2115-3551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30070293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haller, Barbara</creatorcontrib><creatorcontrib>Göpfrich, Kerstin</creatorcontrib><creatorcontrib>Schröter, Martin</creatorcontrib><creatorcontrib>Janiesch, Jan-Willi</creatorcontrib><creatorcontrib>Platzman, Ilia</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><title>Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.</description><subject>Block copolymers</subject><subject>Charge density</subject><subject>Droplets</subject><subject>Ethers - chemistry</subject><subject>Fluorescence</subject><subject>Fluorocarbons - chemistry</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lipids</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Organofluorine compounds</subject><subject>Scanning electron microscopy</subject><subject>Surface Properties</subject><subject>Surface tension</subject><subject>Surfactants</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Vesicles</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlYv_gBZ8CLCarLZj-Qoi1Wh4EVvwpLNR01JNmuSPfTfG23twdMMwzMvMw8AlwjeIYjpPSeGQ1iRQh2BOSobnENE6PGhp80MnIWwgRBVZU1OwQxD2MCC4jn4aD-ZX8ucuyF6Z4wUmdXcO2UmLTTPlPOWRe2GzKnM6FGLvGchUUEPayPzjA1pYzJRc2dH5qOVQ8zCNkRpwzk4UcwEebGvC_C-fHxrn_PV69NL-7DKeVnQmCNJEatFoTDHPSkpFFSVDWeEqaamJeJEUCFkeoTjumeqKBqK0oRVFUccCbwAN7vc0buvSYbYWR24NIYN0k2hKyApIMUVaRJ6_Q_duMkP6bpEUdigsqpgom53VDIRgpeqG722zG87BLsf511LVu2v82WCr_aRU2-lOKB_kvE3PXd9Lw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Haller, Barbara</creator><creator>Göpfrich, Kerstin</creator><creator>Schröter, Martin</creator><creator>Janiesch, Jan-Willi</creator><creator>Platzman, Ilia</creator><creator>Spatz, Joachim P</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0003-2115-3551</orcidid></search><sort><creationdate>20180101</creationdate><title>Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems</title><author>Haller, Barbara ; Göpfrich, Kerstin ; Schröter, Martin ; Janiesch, Jan-Willi ; Platzman, Ilia ; Spatz, Joachim P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1e91a6d2f3c3b8490d9f47ca8af76941c8d9dde019c36baf227919dda55c1c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Block copolymers</topic><topic>Charge density</topic><topic>Droplets</topic><topic>Ethers - chemistry</topic><topic>Fluorescence</topic><topic>Fluorocarbons - chemistry</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lipids</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Organofluorine compounds</topic><topic>Scanning electron microscopy</topic><topic>Surface Properties</topic><topic>Surface tension</topic><topic>Surfactants</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haller, Barbara</creatorcontrib><creatorcontrib>Göpfrich, Kerstin</creatorcontrib><creatorcontrib>Schröter, Martin</creatorcontrib><creatorcontrib>Janiesch, Jan-Willi</creatorcontrib><creatorcontrib>Platzman, Ilia</creatorcontrib><creatorcontrib>Spatz, Joachim P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haller, Barbara</au><au>Göpfrich, Kerstin</au><au>Schröter, Martin</au><au>Janiesch, Jan-Willi</au><au>Platzman, Ilia</au><au>Spatz, Joachim P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>18</volume><issue>17</issue><spage>2665</spage><epage>2674</epage><pages>2665-2674</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30070293</pmid><doi>10.1039/c8lc00582f</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3419-9807</orcidid><orcidid>https://orcid.org/0000-0003-2115-3551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2018-01, Vol.18 (17), p.2665-2674 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2082093587 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Block copolymers Charge density Droplets Ethers - chemistry Fluorescence Fluorocarbons - chemistry Lab-On-A-Chip Devices Lipids Microfluidics Microscopy Organofluorine compounds Scanning electron microscopy Surface Properties Surface tension Surfactants Unilamellar Liposomes - chemistry Vesicles |
title | Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-controlled%20microfluidic%20formation%20of%20lipid-based%20single-%20and%20multicompartment%20systems&rft.jtitle=Lab%20on%20a%20chip&rft.au=Haller,%20Barbara&rft.date=2018-01-01&rft.volume=18&rft.issue=17&rft.spage=2665&rft.epage=2674&rft.pages=2665-2674&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00582f&rft_dat=%3Cproquest_cross%3E2082093587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090714550&rft_id=info:pmid/30070293&rfr_iscdi=true |