Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin

Urania basin in the deep Mediterranean Sea houses a lake that is > 100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulf ide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-06, Vol.106 (23), p.9151-9156
Hauptverfasser: Borin, Sara, Brusetti, Lorenzo, Mapelli, Francesca, D'Auria, Giuseppe, Brusa, Tullio, Marzorati, Massimo, Rizzi, Aurora, Yakimov, Michail, Marty, Danielle, de Lange, Gert J., van der Wielen, Paul, Bolhuis, Henk, McGenity, Terry J., Polymenakou, Paraskevi N., Malinverno, Elisa, Giuliano, Laura, Corselli, Cesare, Daffonchio, Daniele, Karl, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9156
container_issue 23
container_start_page 9151
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Borin, Sara
Brusetti, Lorenzo
Mapelli, Francesca
D'Auria, Giuseppe
Brusa, Tullio
Marzorati, Massimo
Rizzi, Aurora
Yakimov, Michail
Marty, Danielle
de Lange, Gert J.
van der Wielen, Paul
Bolhuis, Henk
McGenity, Terry J.
Polymenakou, Paraskevi N.
Malinverno, Elisa
Giuliano, Laura
Corselli, Cesare
Daffonchio, Daniele
Karl, David M.
description Urania basin in the deep Mediterranean Sea houses a lake that is > 100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulf ide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ-and ε-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.
doi_str_mv 10.1073/pnas.0811984106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20809177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40483184</jstor_id><sourcerecordid>40483184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-aecf4eaf1034187e8503568bc17e15dbfc32187366d071a573d9ef658e3ae9f73</originalsourceid><addsrcrecordid>eNqFks9v0zAUxyMEYmVw5gRYHBAcuj3HduJckEYHFKkTSLCz5SYvrSvX7uykokj87zi0WmEHOFl6_rzv-_XNsqcUziiU7HzjdDwDSWklOYXiXjaiUNFxwSu4n40A8nIsec5PskcxrgCgEhIeZie04iVwKUbZz6-9bftAJrvaGrcg2jXkCruldn6BDqOJ5Eswax2M3ZHLYLZIrkwd_NxoSybeemd-6M54R3xLuiWSqVksEzrImsbU5DpoZzS5RNyQ6W6DIepUCMk7HY17nD1otY345PCeZtcf3n-bTMezzx8_TS5m41oUeTfWWLccdUuBcSpLlAKYKOS8piVS0czbmuUpzoqigZJqUbKmwrYQEpnGqi3ZafZ2r7vp52tsanRd0FZtfk-2U14b9fePM0u18FuVF1KUHJLAm73A8k7a9GKmhhgAp7mQdEsT--pQLPibHmOn1ibWaK126PuoipIJVkH1XzAHmY5ZDu2_vAOufB9c2lhiKINcyqHF8z2UrhNjwPa2TwpqMIsazKKOZkkZz__cypE_uCMBrw_AkHmUK1TOVEUFVW1vbYffu4S--DeaiGd7YhU7H24RnioxKjn7BUzG3ZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201302880</pqid></control><display><type>article</type><title>Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Borin, Sara ; Brusetti, Lorenzo ; Mapelli, Francesca ; D'Auria, Giuseppe ; Brusa, Tullio ; Marzorati, Massimo ; Rizzi, Aurora ; Yakimov, Michail ; Marty, Danielle ; de Lange, Gert J. ; van der Wielen, Paul ; Bolhuis, Henk ; McGenity, Terry J. ; Polymenakou, Paraskevi N. ; Malinverno, Elisa ; Giuliano, Laura ; Corselli, Cesare ; Daffonchio, Daniele ; Karl, David M.</creator><creatorcontrib>Borin, Sara ; Brusetti, Lorenzo ; Mapelli, Francesca ; D'Auria, Giuseppe ; Brusa, Tullio ; Marzorati, Massimo ; Rizzi, Aurora ; Yakimov, Michail ; Marty, Danielle ; de Lange, Gert J. ; van der Wielen, Paul ; Bolhuis, Henk ; McGenity, Terry J. ; Polymenakou, Paraskevi N. ; Malinverno, Elisa ; Giuliano, Laura ; Corselli, Cesare ; Daffonchio, Daniele ; Karl, David M.</creatorcontrib><description>Urania basin in the deep Mediterranean Sea houses a lake that is &gt; 100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulf ide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ-and ε-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0811984106</identifier><identifier>PMID: 19470485</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Archaea ; Archaea - metabolism ; Bacteria ; Bacteria - metabolism ; Basins ; Biomass ; Brine ; Brines ; Cell number ; Cells ; Colonization ; Data processing ; Deoxyribonucleic acid ; DNA ; DNA fingerprinting ; Ecosystem ; Gene libraries ; Houses ; Lakes ; Manganese - metabolism ; Marine environment ; Methane ; Methane production ; Methanogenesis ; Molecular Sequence Data ; Nitrates - metabolism ; Nutrient availability ; Ocean, Atmosphere ; Organic matter ; Oxygen ; Oxygen - metabolism ; Physical Sciences ; Proteobacteria ; rRNA 16S ; rRNA genes ; Salinity ; Salinity effects ; Sciences of the Universe ; Sea water ; Seas ; Seawater ; Seawater - microbiology ; Sulfate ; Sulfates ; Sulfide ; Sulfides ; Sulfur ; Sulfur - metabolism ; Water - metabolism ; Water column</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-06, Vol.106 (23), p.9151-9156</ispartof><rights>Copyright National Academy of Sciences Jun 9, 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-aecf4eaf1034187e8503568bc17e15dbfc32187366d071a573d9ef658e3ae9f73</citedby><cites>FETCH-LOGICAL-c562t-aecf4eaf1034187e8503568bc17e15dbfc32187366d071a573d9ef658e3ae9f73</cites><orcidid>0000-0002-2928-6538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40483184$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40483184$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19470485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00412581$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borin, Sara</creatorcontrib><creatorcontrib>Brusetti, Lorenzo</creatorcontrib><creatorcontrib>Mapelli, Francesca</creatorcontrib><creatorcontrib>D'Auria, Giuseppe</creatorcontrib><creatorcontrib>Brusa, Tullio</creatorcontrib><creatorcontrib>Marzorati, Massimo</creatorcontrib><creatorcontrib>Rizzi, Aurora</creatorcontrib><creatorcontrib>Yakimov, Michail</creatorcontrib><creatorcontrib>Marty, Danielle</creatorcontrib><creatorcontrib>de Lange, Gert J.</creatorcontrib><creatorcontrib>van der Wielen, Paul</creatorcontrib><creatorcontrib>Bolhuis, Henk</creatorcontrib><creatorcontrib>McGenity, Terry J.</creatorcontrib><creatorcontrib>Polymenakou, Paraskevi N.</creatorcontrib><creatorcontrib>Malinverno, Elisa</creatorcontrib><creatorcontrib>Giuliano, Laura</creatorcontrib><creatorcontrib>Corselli, Cesare</creatorcontrib><creatorcontrib>Daffonchio, Daniele</creatorcontrib><creatorcontrib>Karl, David M.</creatorcontrib><title>Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Urania basin in the deep Mediterranean Sea houses a lake that is &gt; 100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulf ide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ-and ε-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.</description><subject>Archaea</subject><subject>Archaea - metabolism</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Basins</subject><subject>Biomass</subject><subject>Brine</subject><subject>Brines</subject><subject>Cell number</subject><subject>Cells</subject><subject>Colonization</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA fingerprinting</subject><subject>Ecosystem</subject><subject>Gene libraries</subject><subject>Houses</subject><subject>Lakes</subject><subject>Manganese - metabolism</subject><subject>Marine environment</subject><subject>Methane</subject><subject>Methane production</subject><subject>Methanogenesis</subject><subject>Molecular Sequence Data</subject><subject>Nitrates - metabolism</subject><subject>Nutrient availability</subject><subject>Ocean, Atmosphere</subject><subject>Organic matter</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Physical Sciences</subject><subject>Proteobacteria</subject><subject>rRNA 16S</subject><subject>rRNA genes</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sciences of the Universe</subject><subject>Sea water</subject><subject>Seas</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Sulfate</subject><subject>Sulfates</subject><subject>Sulfide</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulfur - metabolism</subject><subject>Water - metabolism</subject><subject>Water column</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9v0zAUxyMEYmVw5gRYHBAcuj3HduJckEYHFKkTSLCz5SYvrSvX7uykokj87zi0WmEHOFl6_rzv-_XNsqcUziiU7HzjdDwDSWklOYXiXjaiUNFxwSu4n40A8nIsec5PskcxrgCgEhIeZie04iVwKUbZz6-9bftAJrvaGrcg2jXkCruldn6BDqOJ5Eswax2M3ZHLYLZIrkwd_NxoSybeemd-6M54R3xLuiWSqVksEzrImsbU5DpoZzS5RNyQ6W6DIepUCMk7HY17nD1otY345PCeZtcf3n-bTMezzx8_TS5m41oUeTfWWLccdUuBcSpLlAKYKOS8piVS0czbmuUpzoqigZJqUbKmwrYQEpnGqi3ZafZ2r7vp52tsanRd0FZtfk-2U14b9fePM0u18FuVF1KUHJLAm73A8k7a9GKmhhgAp7mQdEsT--pQLPibHmOn1ibWaK126PuoipIJVkH1XzAHmY5ZDu2_vAOufB9c2lhiKINcyqHF8z2UrhNjwPa2TwpqMIsazKKOZkkZz__cypE_uCMBrw_AkHmUK1TOVEUFVW1vbYffu4S--DeaiGd7YhU7H24RnioxKjn7BUzG3ZQ</recordid><startdate>20090609</startdate><enddate>20090609</enddate><creator>Borin, Sara</creator><creator>Brusetti, Lorenzo</creator><creator>Mapelli, Francesca</creator><creator>D'Auria, Giuseppe</creator><creator>Brusa, Tullio</creator><creator>Marzorati, Massimo</creator><creator>Rizzi, Aurora</creator><creator>Yakimov, Michail</creator><creator>Marty, Danielle</creator><creator>de Lange, Gert J.</creator><creator>van der Wielen, Paul</creator><creator>Bolhuis, Henk</creator><creator>McGenity, Terry J.</creator><creator>Polymenakou, Paraskevi N.</creator><creator>Malinverno, Elisa</creator><creator>Giuliano, Laura</creator><creator>Corselli, Cesare</creator><creator>Daffonchio, Daniele</creator><creator>Karl, David M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2928-6538</orcidid></search><sort><creationdate>20090609</creationdate><title>Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin</title><author>Borin, Sara ; Brusetti, Lorenzo ; Mapelli, Francesca ; D'Auria, Giuseppe ; Brusa, Tullio ; Marzorati, Massimo ; Rizzi, Aurora ; Yakimov, Michail ; Marty, Danielle ; de Lange, Gert J. ; van der Wielen, Paul ; Bolhuis, Henk ; McGenity, Terry J. ; Polymenakou, Paraskevi N. ; Malinverno, Elisa ; Giuliano, Laura ; Corselli, Cesare ; Daffonchio, Daniele ; Karl, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-aecf4eaf1034187e8503568bc17e15dbfc32187366d071a573d9ef658e3ae9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Archaea</topic><topic>Archaea - metabolism</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Basins</topic><topic>Biomass</topic><topic>Brine</topic><topic>Brines</topic><topic>Cell number</topic><topic>Cells</topic><topic>Colonization</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA fingerprinting</topic><topic>Ecosystem</topic><topic>Gene libraries</topic><topic>Houses</topic><topic>Lakes</topic><topic>Manganese - metabolism</topic><topic>Marine environment</topic><topic>Methane</topic><topic>Methane production</topic><topic>Methanogenesis</topic><topic>Molecular Sequence Data</topic><topic>Nitrates - metabolism</topic><topic>Nutrient availability</topic><topic>Ocean, Atmosphere</topic><topic>Organic matter</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Physical Sciences</topic><topic>Proteobacteria</topic><topic>rRNA 16S</topic><topic>rRNA genes</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sciences of the Universe</topic><topic>Sea water</topic><topic>Seas</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Sulfate</topic><topic>Sulfates</topic><topic>Sulfide</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulfur - metabolism</topic><topic>Water - metabolism</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borin, Sara</creatorcontrib><creatorcontrib>Brusetti, Lorenzo</creatorcontrib><creatorcontrib>Mapelli, Francesca</creatorcontrib><creatorcontrib>D'Auria, Giuseppe</creatorcontrib><creatorcontrib>Brusa, Tullio</creatorcontrib><creatorcontrib>Marzorati, Massimo</creatorcontrib><creatorcontrib>Rizzi, Aurora</creatorcontrib><creatorcontrib>Yakimov, Michail</creatorcontrib><creatorcontrib>Marty, Danielle</creatorcontrib><creatorcontrib>de Lange, Gert J.</creatorcontrib><creatorcontrib>van der Wielen, Paul</creatorcontrib><creatorcontrib>Bolhuis, Henk</creatorcontrib><creatorcontrib>McGenity, Terry J.</creatorcontrib><creatorcontrib>Polymenakou, Paraskevi N.</creatorcontrib><creatorcontrib>Malinverno, Elisa</creatorcontrib><creatorcontrib>Giuliano, Laura</creatorcontrib><creatorcontrib>Corselli, Cesare</creatorcontrib><creatorcontrib>Daffonchio, Daniele</creatorcontrib><creatorcontrib>Karl, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borin, Sara</au><au>Brusetti, Lorenzo</au><au>Mapelli, Francesca</au><au>D'Auria, Giuseppe</au><au>Brusa, Tullio</au><au>Marzorati, Massimo</au><au>Rizzi, Aurora</au><au>Yakimov, Michail</au><au>Marty, Danielle</au><au>de Lange, Gert J.</au><au>van der Wielen, Paul</au><au>Bolhuis, Henk</au><au>McGenity, Terry J.</au><au>Polymenakou, Paraskevi N.</au><au>Malinverno, Elisa</au><au>Giuliano, Laura</au><au>Corselli, Cesare</au><au>Daffonchio, Daniele</au><au>Karl, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-06-09</date><risdate>2009</risdate><volume>106</volume><issue>23</issue><spage>9151</spage><epage>9156</epage><pages>9151-9156</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Urania basin in the deep Mediterranean Sea houses a lake that is &gt; 100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulf ide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines δ-and ε-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19470485</pmid><doi>10.1073/pnas.0811984106</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2928-6538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-06, Vol.106 (23), p.9151-9156
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_20809177
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Archaea
Archaea - metabolism
Bacteria
Bacteria - metabolism
Basins
Biomass
Brine
Brines
Cell number
Cells
Colonization
Data processing
Deoxyribonucleic acid
DNA
DNA fingerprinting
Ecosystem
Gene libraries
Houses
Lakes
Manganese - metabolism
Marine environment
Methane
Methane production
Methanogenesis
Molecular Sequence Data
Nitrates - metabolism
Nutrient availability
Ocean, Atmosphere
Organic matter
Oxygen
Oxygen - metabolism
Physical Sciences
Proteobacteria
rRNA 16S
rRNA genes
Salinity
Salinity effects
Sciences of the Universe
Sea water
Seas
Seawater
Seawater - microbiology
Sulfate
Sulfates
Sulfide
Sulfides
Sulfur
Sulfur - metabolism
Water - metabolism
Water column
title Sulfur Cycling and Methanogenesis Primarily Drive Microbial Colonization of the Highly Sulfidic Urania Deep Hypersaline Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur%20Cycling%20and%20Methanogenesis%20Primarily%20Drive%20Microbial%20Colonization%20of%20the%20Highly%20Sulfidic%20Urania%20Deep%20Hypersaline%20Basin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Borin,%20Sara&rft.date=2009-06-09&rft.volume=106&rft.issue=23&rft.spage=9151&rft.epage=9156&rft.pages=9151-9156&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0811984106&rft_dat=%3Cjstor_proqu%3E40483184%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201302880&rft_id=info:pmid/19470485&rft_jstor_id=40483184&rfr_iscdi=true