Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair
Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We des...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2006-01, Vol.7 (1), p.310-316 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 1 |
container_start_page | 310 |
container_title | Biomacromolecules |
container_volume | 7 |
creator | Soentjens, Serge HM Nettles, Dana L Carnahan, Michael A Setton, Lori A Grinstaff, Mark W |
description | Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen. |
doi_str_mv | 10.1021/bm050663ePII:S1525-7797(05)00663-X |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_20808879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20808879</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_208088793</originalsourceid><addsrcrecordid>eNqNiktuwjAUAC1UJL538ArRSoaXBOfDriAQ7BDJgh0y-AUZORj8yILbl1IO0NWMRsPYVwCjAMJgfKhAQhxHuFmvp3kgQymSJEuGID_ht4tdg7WfORaTGMKPl_8tLdYhOgNAFk1km33PjNN40d5U6MVMEWq-emjvTmh5flRl6awmXjrP58rfjVUn5IUhqpFv8aqM77FmqSxh_80uGywXxXwlrt7daqT7vjJ0RGvVBV1N-xBSSNMki_49_gBluUdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20808879</pqid></control><display><type>article</type><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><source>ACS Publications</source><creator>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</creator><creatorcontrib>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</creatorcontrib><description>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm050663ePII:S1525-7797(05)00663-X</identifier><language>eng</language><ispartof>Biomacromolecules, 2006-01, Vol.7 (1), p.310-316</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Soentjens, Serge HM</creatorcontrib><creatorcontrib>Nettles, Dana L</creatorcontrib><creatorcontrib>Carnahan, Michael A</creatorcontrib><creatorcontrib>Setton, Lori A</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><title>Biomacromolecules</title><description>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNiktuwjAUAC1UJL538ArRSoaXBOfDriAQ7BDJgh0y-AUZORj8yILbl1IO0NWMRsPYVwCjAMJgfKhAQhxHuFmvp3kgQymSJEuGID_ht4tdg7WfORaTGMKPl_8tLdYhOgNAFk1km33PjNN40d5U6MVMEWq-emjvTmh5flRl6awmXjrP58rfjVUn5IUhqpFv8aqM77FmqSxh_80uGywXxXwlrt7daqT7vjJ0RGvVBV1N-xBSSNMki_49_gBluUdx</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Soentjens, Serge HM</creator><creator>Nettles, Dana L</creator><creator>Carnahan, Michael A</creator><creator>Setton, Lori A</creator><creator>Grinstaff, Mark W</creator><scope>7QO</scope><scope>7QP</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20060101</creationdate><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><author>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_208088793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soentjens, Serge HM</creatorcontrib><creatorcontrib>Nettles, Dana L</creatorcontrib><creatorcontrib>Carnahan, Michael A</creatorcontrib><creatorcontrib>Setton, Lori A</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soentjens, Serge HM</au><au>Nettles, Dana L</au><au>Carnahan, Michael A</au><au>Setton, Lori A</au><au>Grinstaff, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</atitle><jtitle>Biomacromolecules</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>7</volume><issue>1</issue><spage>310</spage><epage>316</epage><pages>310-316</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</abstract><doi>10.1021/bm050663ePII:S1525-7797(05)00663-X</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2006-01, Vol.7 (1), p.310-316 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_20808879 |
source | ACS Publications |
title | Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodendrimer-Based%20Hydrogel%20Scaffolds%20for%20Cartilage%20Tissue%20Repair&rft.jtitle=Biomacromolecules&rft.au=Soentjens,%20Serge%20HM&rft.date=2006-01-01&rft.volume=7&rft.issue=1&rft.spage=310&rft.epage=316&rft.pages=310-316&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm050663ePII:S1525-7797(05)00663-X&rft_dat=%3Cproquest%3E20808879%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20808879&rft_id=info:pmid/&rfr_iscdi=true |