Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair

Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2006-01, Vol.7 (1), p.310-316
Hauptverfasser: Soentjens, Serge HM, Nettles, Dana L, Carnahan, Michael A, Setton, Lori A, Grinstaff, Mark W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 1
container_start_page 310
container_title Biomacromolecules
container_volume 7
creator Soentjens, Serge HM
Nettles, Dana L
Carnahan, Michael A
Setton, Lori A
Grinstaff, Mark W
description Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.
doi_str_mv 10.1021/bm050663ePII:S1525-7797(05)00663-X
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_20808879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20808879</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_208088793</originalsourceid><addsrcrecordid>eNqNiktuwjAUAC1UJL538ArRSoaXBOfDriAQ7BDJgh0y-AUZORj8yILbl1IO0NWMRsPYVwCjAMJgfKhAQhxHuFmvp3kgQymSJEuGID_ht4tdg7WfORaTGMKPl_8tLdYhOgNAFk1km33PjNN40d5U6MVMEWq-emjvTmh5flRl6awmXjrP58rfjVUn5IUhqpFv8aqM77FmqSxh_80uGywXxXwlrt7daqT7vjJ0RGvVBV1N-xBSSNMki_49_gBluUdx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20808879</pqid></control><display><type>article</type><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><source>ACS Publications</source><creator>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</creator><creatorcontrib>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</creatorcontrib><description>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm050663ePII:S1525-7797(05)00663-X</identifier><language>eng</language><ispartof>Biomacromolecules, 2006-01, Vol.7 (1), p.310-316</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Soentjens, Serge HM</creatorcontrib><creatorcontrib>Nettles, Dana L</creatorcontrib><creatorcontrib>Carnahan, Michael A</creatorcontrib><creatorcontrib>Setton, Lori A</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><title>Biomacromolecules</title><description>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNiktuwjAUAC1UJL538ArRSoaXBOfDriAQ7BDJgh0y-AUZORj8yILbl1IO0NWMRsPYVwCjAMJgfKhAQhxHuFmvp3kgQymSJEuGID_ht4tdg7WfORaTGMKPl_8tLdYhOgNAFk1km33PjNN40d5U6MVMEWq-emjvTmh5flRl6awmXjrP58rfjVUn5IUhqpFv8aqM77FmqSxh_80uGywXxXwlrt7daqT7vjJ0RGvVBV1N-xBSSNMki_49_gBluUdx</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Soentjens, Serge HM</creator><creator>Nettles, Dana L</creator><creator>Carnahan, Michael A</creator><creator>Setton, Lori A</creator><creator>Grinstaff, Mark W</creator><scope>7QO</scope><scope>7QP</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20060101</creationdate><title>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</title><author>Soentjens, Serge HM ; Nettles, Dana L ; Carnahan, Michael A ; Setton, Lori A ; Grinstaff, Mark W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_208088793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soentjens, Serge HM</creatorcontrib><creatorcontrib>Nettles, Dana L</creatorcontrib><creatorcontrib>Carnahan, Michael A</creatorcontrib><creatorcontrib>Setton, Lori A</creatorcontrib><creatorcontrib>Grinstaff, Mark W</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soentjens, Serge HM</au><au>Nettles, Dana L</au><au>Carnahan, Michael A</au><au>Setton, Lori A</au><au>Grinstaff, Mark W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair</atitle><jtitle>Biomacromolecules</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>7</volume><issue>1</issue><spage>310</spage><epage>316</epage><pages>310-316</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well- integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen.</abstract><doi>10.1021/bm050663ePII:S1525-7797(05)00663-X</doi></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2006-01, Vol.7 (1), p.310-316
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_20808879
source ACS Publications
title Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodendrimer-Based%20Hydrogel%20Scaffolds%20for%20Cartilage%20Tissue%20Repair&rft.jtitle=Biomacromolecules&rft.au=Soentjens,%20Serge%20HM&rft.date=2006-01-01&rft.volume=7&rft.issue=1&rft.spage=310&rft.epage=316&rft.pages=310-316&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm050663ePII:S1525-7797(05)00663-X&rft_dat=%3Cproquest%3E20808879%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20808879&rft_id=info:pmid/&rfr_iscdi=true