3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate

Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-12, Vol.30 (49), p.e1705911-n/a
Hauptverfasser: Ma, Yufei, Lin, Min, Huang, Guoyou, Li, Yuhui, Wang, Shuqi, Bai, Guiqin, Lu, Tian Jian, Xu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 49
container_start_page e1705911
container_title Advanced materials (Weinheim)
container_volume 30
creator Ma, Yufei
Lin, Min
Huang, Guoyou
Li, Yuhui
Wang, Shuqi
Bai, Guiqin
Lu, Tian Jian
Xu, Feng
description Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented. Engineering of 3D spatiotemporal mechanical microenvironments based on novel hydrogels is reviewed. These in vitro engineered spatiotemporal mechanical microenvironments (e.g., spatially heterogeneous and temporally dynamic mechanical cues) are crucial for guiding stem cell fate, and their potential biomedical applications including stem‐cell‐based therapy, pathological study, tissue engineering, and organoid formation are subsequently discussed.
doi_str_mv 10.1002/adma.201705911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2080838967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140946486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4761-889cc32c519d3b7f8450614fcd08e371bdcaf0c99270b9d710a6d6b68476bd373</originalsourceid><addsrcrecordid>eNqFkc1O3DAURq0KVKbQbZfIEptuMlzHiWN3Nx1-BglUJGBtObYDRkk8tRPQ7HiEPmOfpB7NABKbbny9OPfo6vsQ-kZgSgDyY2U6Nc2BVFAKQj6hCSlzkhUgyh00AUHLTLCC76EvMT4CgGDAPqM9CsBozmCCLD3BN0s1OD_YbumDavGV1Q-qd3r9dTp42z-54PvO9sMPPMOLlQn-3rZ_X_78VNEafN2qofGhw-nB56Mzrr_HN0mH57Zt8Zka7AHabVQb7dft3Ed3Z6e380V2-ev8Yj67zHRRMZJxLrSmuS6JMLSuGl6UwEjRaAPc0orURqsGtBB5BbUwFQHFDKsZT9u1oRXdR9833mXwv0cbB9m5qNMVqrd-jDIHDpxywdbo0Qf00Y-hT9fJnKT8ihQbS9R0Q6UcYgy2kcvgOhVWkoBcFyDXBci3AtLC4VY71p01b_hr4gkQG-DZtXb1H52cnVzN3uX_AD19kZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140946486</pqid></control><display><type>article</type><title>3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Yufei ; Lin, Min ; Huang, Guoyou ; Li, Yuhui ; Wang, Shuqi ; Bai, Guiqin ; Lu, Tian Jian ; Xu, Feng</creator><creatorcontrib>Ma, Yufei ; Lin, Min ; Huang, Guoyou ; Li, Yuhui ; Wang, Shuqi ; Bai, Guiqin ; Lu, Tian Jian ; Xu, Feng</creatorcontrib><description>Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented. Engineering of 3D spatiotemporal mechanical microenvironments based on novel hydrogels is reviewed. These in vitro engineered spatiotemporal mechanical microenvironments (e.g., spatially heterogeneous and temporally dynamic mechanical cues) are crucial for guiding stem cell fate, and their potential biomedical applications including stem‐cell‐based therapy, pathological study, tissue engineering, and organoid formation are subsequently discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201705911</identifier><identifier>PMID: 30063260</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomechanical Phenomena - drug effects ; Biomedical materials ; cell microenvironments ; Cellular Microenvironment - drug effects ; Cues ; Design engineering ; Embryos ; Humans ; Hydrogels ; Hydrogels - pharmacology ; Materials science ; mechanical cues ; Mechanical Phenomena ; Mechanical properties ; polymeric design ; spatiotemporal control ; Stem cells ; Stem Cells - cytology ; Stem Cells - drug effects ; Stem Cells - metabolism</subject><ispartof>Advanced materials (Weinheim), 2018-12, Vol.30 (49), p.e1705911-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4761-889cc32c519d3b7f8450614fcd08e371bdcaf0c99270b9d710a6d6b68476bd373</citedby><cites>FETCH-LOGICAL-c4761-889cc32c519d3b7f8450614fcd08e371bdcaf0c99270b9d710a6d6b68476bd373</cites><orcidid>0000-0003-4351-0222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201705911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201705911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30063260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Yufei</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Huang, Guoyou</creatorcontrib><creatorcontrib>Li, Yuhui</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Bai, Guiqin</creatorcontrib><creatorcontrib>Lu, Tian Jian</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><title>3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented. Engineering of 3D spatiotemporal mechanical microenvironments based on novel hydrogels is reviewed. These in vitro engineered spatiotemporal mechanical microenvironments (e.g., spatially heterogeneous and temporally dynamic mechanical cues) are crucial for guiding stem cell fate, and their potential biomedical applications including stem‐cell‐based therapy, pathological study, tissue engineering, and organoid formation are subsequently discussed.</description><subject>Biomechanical Phenomena - drug effects</subject><subject>Biomedical materials</subject><subject>cell microenvironments</subject><subject>Cellular Microenvironment - drug effects</subject><subject>Cues</subject><subject>Design engineering</subject><subject>Embryos</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Materials science</subject><subject>mechanical cues</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>polymeric design</subject><subject>spatiotemporal control</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Stem Cells - metabolism</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1O3DAURq0KVKbQbZfIEptuMlzHiWN3Nx1-BglUJGBtObYDRkk8tRPQ7HiEPmOfpB7NABKbbny9OPfo6vsQ-kZgSgDyY2U6Nc2BVFAKQj6hCSlzkhUgyh00AUHLTLCC76EvMT4CgGDAPqM9CsBozmCCLD3BN0s1OD_YbumDavGV1Q-qd3r9dTp42z-54PvO9sMPPMOLlQn-3rZ_X_78VNEafN2qofGhw-nB56Mzrr_HN0mH57Zt8Zka7AHabVQb7dft3Ed3Z6e380V2-ev8Yj67zHRRMZJxLrSmuS6JMLSuGl6UwEjRaAPc0orURqsGtBB5BbUwFQHFDKsZT9u1oRXdR9833mXwv0cbB9m5qNMVqrd-jDIHDpxywdbo0Qf00Y-hT9fJnKT8ihQbS9R0Q6UcYgy2kcvgOhVWkoBcFyDXBci3AtLC4VY71p01b_hr4gkQG-DZtXb1H52cnVzN3uX_AD19kZY</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Ma, Yufei</creator><creator>Lin, Min</creator><creator>Huang, Guoyou</creator><creator>Li, Yuhui</creator><creator>Wang, Shuqi</creator><creator>Bai, Guiqin</creator><creator>Lu, Tian Jian</creator><creator>Xu, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4351-0222</orcidid></search><sort><creationdate>201812</creationdate><title>3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate</title><author>Ma, Yufei ; Lin, Min ; Huang, Guoyou ; Li, Yuhui ; Wang, Shuqi ; Bai, Guiqin ; Lu, Tian Jian ; Xu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4761-889cc32c519d3b7f8450614fcd08e371bdcaf0c99270b9d710a6d6b68476bd373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanical Phenomena - drug effects</topic><topic>Biomedical materials</topic><topic>cell microenvironments</topic><topic>Cellular Microenvironment - drug effects</topic><topic>Cues</topic><topic>Design engineering</topic><topic>Embryos</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Materials science</topic><topic>mechanical cues</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>polymeric design</topic><topic>spatiotemporal control</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yufei</creatorcontrib><creatorcontrib>Lin, Min</creatorcontrib><creatorcontrib>Huang, Guoyou</creatorcontrib><creatorcontrib>Li, Yuhui</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Bai, Guiqin</creatorcontrib><creatorcontrib>Lu, Tian Jian</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yufei</au><au>Lin, Min</au><au>Huang, Guoyou</au><au>Li, Yuhui</au><au>Wang, Shuqi</au><au>Bai, Guiqin</au><au>Lu, Tian Jian</au><au>Xu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-12</date><risdate>2018</risdate><volume>30</volume><issue>49</issue><spage>e1705911</spage><epage>n/a</epage><pages>e1705911-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented. Engineering of 3D spatiotemporal mechanical microenvironments based on novel hydrogels is reviewed. These in vitro engineered spatiotemporal mechanical microenvironments (e.g., spatially heterogeneous and temporally dynamic mechanical cues) are crucial for guiding stem cell fate, and their potential biomedical applications including stem‐cell‐based therapy, pathological study, tissue engineering, and organoid formation are subsequently discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30063260</pmid><doi>10.1002/adma.201705911</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4351-0222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-12, Vol.30 (49), p.e1705911-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2080838967
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biomechanical Phenomena - drug effects
Biomedical materials
cell microenvironments
Cellular Microenvironment - drug effects
Cues
Design engineering
Embryos
Humans
Hydrogels
Hydrogels - pharmacology
Materials science
mechanical cues
Mechanical Phenomena
Mechanical properties
polymeric design
spatiotemporal control
Stem cells
Stem Cells - cytology
Stem Cells - drug effects
Stem Cells - metabolism
title 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel‐Based Platform for Guiding Stem Cell Fate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Spatiotemporal%20Mechanical%20Microenvironment:%20A%20Hydrogel%E2%80%90Based%20Platform%20for%20Guiding%20Stem%20Cell%20Fate&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ma,%20Yufei&rft.date=2018-12&rft.volume=30&rft.issue=49&rft.spage=e1705911&rft.epage=n/a&rft.pages=e1705911-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201705911&rft_dat=%3Cproquest_cross%3E2140946486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140946486&rft_id=info:pmid/30063260&rfr_iscdi=true