Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation

An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-04, Vol.79 (7), p.2658-2673
Hauptverfasser: Kalasinsky, Kathryn S, Hadfield, Ted, Shea, April A, Kalasinsky, Victor F, Nelson, Matthew P, Neiss, Jason, Drauch, Amy J, Vanni, G. Steven, Treado, Patrick J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2673
container_issue 7
container_start_page 2658
container_title Analytical chemistry (Washington)
container_volume 79
creator Kalasinsky, Kathryn S
Hadfield, Ted
Shea, April A
Kalasinsky, Victor F
Nelson, Matthew P
Neiss, Jason
Drauch, Amy J
Vanni, G. Steven
Treado, Patrick J
description An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without the use of amplification or enhancement techniques. RCIS is reliant upon the use of Raman signatures and automated recognition algorithms to perform species-level identification. The rationale and steps for constructing a pathogen Raman signature library are described, as well as the first reported Raman spectra from live, priority pathogens, including Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Francisella tularensis, Brucella abortus, and ricin. Results from a government-managed blind trial evaluation of the signature library demonstrated excellent specificity under controlled laboratory conditions.
doi_str_mv 10.1021/ac0700575
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20806436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20806436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-ea47721f546842569f3ed0f61c2997373a934438e652d7dfd67f7fab4e813b673</originalsourceid><addsrcrecordid>eNpl0UtvEzEQB3ALUdFQOPAF0AoJJA4Lfqwf2xtKGxpURJWUszXZHadb9oW9W9Eb4sbX5JPUTaIGwcmS5zejsf-EvGD0HaOcvYeCakqllo_IhElOU2UMf0wmlFKR8lg6JE9DuKaUMcrUE3LItBBGUj0hvxbQQJtMr7CpCqiTeQPrql0nyx6LwXeh6PrbZIGwxnaoMYTkBIdYqbo2gbZM5mW8r1xs3Vx1LrmA4aqLOhz_-fk7WVbrFobRY-y7wbrrm-g3nac3UI-brmfkwEEd8PnuPCJfZ6eX07P0_MvH-fTDeQqZyIcUIdOaMyczZTIuVe4EltQpVvA810ILyEWWCYNK8lKXrlTaaQerDA0TK6XFEXmzndv77vuIYbBNFQqsa2ixG4Pl1FCVCRXhq3_gdTf6Nu5mOdPG5JKziN5uURF_KXh0tvdVA_7WMmrvU7EPqUT7cjdwXDVY7uUuhghe7wCEmILz0BZV2DsT16dCRJduXRUG_PFQB__NRqGlvbxY2tnnT3wxO1nYv-ZCEfaP-H_BO1vmsBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217889521</pqid></control><display><type>article</type><title>Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Kalasinsky, Kathryn S ; Hadfield, Ted ; Shea, April A ; Kalasinsky, Victor F ; Nelson, Matthew P ; Neiss, Jason ; Drauch, Amy J ; Vanni, G. Steven ; Treado, Patrick J</creator><creatorcontrib>Kalasinsky, Kathryn S ; Hadfield, Ted ; Shea, April A ; Kalasinsky, Victor F ; Nelson, Matthew P ; Neiss, Jason ; Drauch, Amy J ; Vanni, G. Steven ; Treado, Patrick J</creatorcontrib><description>An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without the use of amplification or enhancement techniques. RCIS is reliant upon the use of Raman signatures and automated recognition algorithms to perform species-level identification. The rationale and steps for constructing a pathogen Raman signature library are described, as well as the first reported Raman spectra from live, priority pathogens, including Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Francisella tularensis, Brucella abortus, and ricin. Results from a government-managed blind trial evaluation of the signature library demonstrated excellent specificity under controlled laboratory conditions.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0700575</identifier><identifier>PMID: 17338507</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Algorithms ; Analytical chemistry ; Applied sciences ; Bacillus anthracis ; Bacillus anthracis - chemistry ; Bacillus anthracis - classification ; Brucella abortus ; Brucella abortus - chemistry ; Brucella abortus - classification ; Burkholderia mallei ; Burkholderia mallei - chemistry ; Burkholderia mallei - classification ; Chemistry ; Exact sciences and technology ; Francisella tularensis ; Francisella tularensis - chemistry ; Francisella tularensis - classification ; Global environmental pollution ; Image Processing, Computer-Assisted - instrumentation ; Image Processing, Computer-Assisted - methods ; Methods ; Microbiology ; Microscopy, Fluorescence - instrumentation ; Microscopy, Fluorescence - methods ; Particle Size ; Pathogens ; Pollution ; Ricin - chemistry ; Sensitivity and Specificity ; Spectrometric and optical methods ; Spectrum analysis ; Spectrum Analysis, Raman - instrumentation ; Spectrum Analysis, Raman - methods ; Yersinia pestis ; Yersinia pestis - chemistry ; Yersinia pestis - classification</subject><ispartof>Analytical chemistry (Washington), 2007-04, Vol.79 (7), p.2658-2673</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Apr 1, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-ea47721f546842569f3ed0f61c2997373a934438e652d7dfd67f7fab4e813b673</citedby><cites>FETCH-LOGICAL-a439t-ea47721f546842569f3ed0f61c2997373a934438e652d7dfd67f7fab4e813b673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0700575$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0700575$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18673033$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17338507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalasinsky, Kathryn S</creatorcontrib><creatorcontrib>Hadfield, Ted</creatorcontrib><creatorcontrib>Shea, April A</creatorcontrib><creatorcontrib>Kalasinsky, Victor F</creatorcontrib><creatorcontrib>Nelson, Matthew P</creatorcontrib><creatorcontrib>Neiss, Jason</creatorcontrib><creatorcontrib>Drauch, Amy J</creatorcontrib><creatorcontrib>Vanni, G. Steven</creatorcontrib><creatorcontrib>Treado, Patrick J</creatorcontrib><title>Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without the use of amplification or enhancement techniques. RCIS is reliant upon the use of Raman signatures and automated recognition algorithms to perform species-level identification. The rationale and steps for constructing a pathogen Raman signature library are described, as well as the first reported Raman spectra from live, priority pathogens, including Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Francisella tularensis, Brucella abortus, and ricin. Results from a government-managed blind trial evaluation of the signature library demonstrated excellent specificity under controlled laboratory conditions.</description><subject>Algorithms</subject><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Bacillus anthracis</subject><subject>Bacillus anthracis - chemistry</subject><subject>Bacillus anthracis - classification</subject><subject>Brucella abortus</subject><subject>Brucella abortus - chemistry</subject><subject>Brucella abortus - classification</subject><subject>Burkholderia mallei</subject><subject>Burkholderia mallei - chemistry</subject><subject>Burkholderia mallei - classification</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Francisella tularensis</subject><subject>Francisella tularensis - chemistry</subject><subject>Francisella tularensis - classification</subject><subject>Global environmental pollution</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Microscopy, Fluorescence - instrumentation</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Particle Size</subject><subject>Pathogens</subject><subject>Pollution</subject><subject>Ricin - chemistry</subject><subject>Sensitivity and Specificity</subject><subject>Spectrometric and optical methods</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - instrumentation</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Yersinia pestis</subject><subject>Yersinia pestis - chemistry</subject><subject>Yersinia pestis - classification</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0UtvEzEQB3ALUdFQOPAF0AoJJA4Lfqwf2xtKGxpURJWUszXZHadb9oW9W9Eb4sbX5JPUTaIGwcmS5zejsf-EvGD0HaOcvYeCakqllo_IhElOU2UMf0wmlFKR8lg6JE9DuKaUMcrUE3LItBBGUj0hvxbQQJtMr7CpCqiTeQPrql0nyx6LwXeh6PrbZIGwxnaoMYTkBIdYqbo2gbZM5mW8r1xs3Vx1LrmA4aqLOhz_-fk7WVbrFobRY-y7wbrrm-g3nac3UI-brmfkwEEd8PnuPCJfZ6eX07P0_MvH-fTDeQqZyIcUIdOaMyczZTIuVe4EltQpVvA810ILyEWWCYNK8lKXrlTaaQerDA0TK6XFEXmzndv77vuIYbBNFQqsa2ixG4Pl1FCVCRXhq3_gdTf6Nu5mOdPG5JKziN5uURF_KXh0tvdVA_7WMmrvU7EPqUT7cjdwXDVY7uUuhghe7wCEmILz0BZV2DsT16dCRJduXRUG_PFQB__NRqGlvbxY2tnnT3wxO1nYv-ZCEfaP-H_BO1vmsBY</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Kalasinsky, Kathryn S</creator><creator>Hadfield, Ted</creator><creator>Shea, April A</creator><creator>Kalasinsky, Victor F</creator><creator>Nelson, Matthew P</creator><creator>Neiss, Jason</creator><creator>Drauch, Amy J</creator><creator>Vanni, G. Steven</creator><creator>Treado, Patrick J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>7T7</scope></search><sort><creationdate>20070401</creationdate><title>Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation</title><author>Kalasinsky, Kathryn S ; Hadfield, Ted ; Shea, April A ; Kalasinsky, Victor F ; Nelson, Matthew P ; Neiss, Jason ; Drauch, Amy J ; Vanni, G. Steven ; Treado, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-ea47721f546842569f3ed0f61c2997373a934438e652d7dfd67f7fab4e813b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Bacillus anthracis</topic><topic>Bacillus anthracis - chemistry</topic><topic>Bacillus anthracis - classification</topic><topic>Brucella abortus</topic><topic>Brucella abortus - chemistry</topic><topic>Brucella abortus - classification</topic><topic>Burkholderia mallei</topic><topic>Burkholderia mallei - chemistry</topic><topic>Burkholderia mallei - classification</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Francisella tularensis</topic><topic>Francisella tularensis - chemistry</topic><topic>Francisella tularensis - classification</topic><topic>Global environmental pollution</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Microscopy, Fluorescence - instrumentation</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Particle Size</topic><topic>Pathogens</topic><topic>Pollution</topic><topic>Ricin - chemistry</topic><topic>Sensitivity and Specificity</topic><topic>Spectrometric and optical methods</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - instrumentation</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Yersinia pestis</topic><topic>Yersinia pestis - chemistry</topic><topic>Yersinia pestis - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalasinsky, Kathryn S</creatorcontrib><creatorcontrib>Hadfield, Ted</creatorcontrib><creatorcontrib>Shea, April A</creatorcontrib><creatorcontrib>Kalasinsky, Victor F</creatorcontrib><creatorcontrib>Nelson, Matthew P</creatorcontrib><creatorcontrib>Neiss, Jason</creatorcontrib><creatorcontrib>Drauch, Amy J</creatorcontrib><creatorcontrib>Vanni, G. Steven</creatorcontrib><creatorcontrib>Treado, Patrick J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalasinsky, Kathryn S</au><au>Hadfield, Ted</au><au>Shea, April A</au><au>Kalasinsky, Victor F</au><au>Nelson, Matthew P</au><au>Neiss, Jason</au><au>Drauch, Amy J</au><au>Vanni, G. Steven</au><au>Treado, Patrick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>79</volume><issue>7</issue><spage>2658</spage><epage>2673</epage><pages>2658-2673</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without the use of amplification or enhancement techniques. RCIS is reliant upon the use of Raman signatures and automated recognition algorithms to perform species-level identification. The rationale and steps for constructing a pathogen Raman signature library are described, as well as the first reported Raman spectra from live, priority pathogens, including Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Francisella tularensis, Brucella abortus, and ricin. Results from a government-managed blind trial evaluation of the signature library demonstrated excellent specificity under controlled laboratory conditions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17338507</pmid><doi>10.1021/ac0700575</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2007-04, Vol.79 (7), p.2658-2673
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_20806436
source MEDLINE; American Chemical Society (ACS) Journals
subjects Algorithms
Analytical chemistry
Applied sciences
Bacillus anthracis
Bacillus anthracis - chemistry
Bacillus anthracis - classification
Brucella abortus
Brucella abortus - chemistry
Brucella abortus - classification
Burkholderia mallei
Burkholderia mallei - chemistry
Burkholderia mallei - classification
Chemistry
Exact sciences and technology
Francisella tularensis
Francisella tularensis - chemistry
Francisella tularensis - classification
Global environmental pollution
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
Methods
Microbiology
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
Particle Size
Pathogens
Pollution
Ricin - chemistry
Sensitivity and Specificity
Spectrometric and optical methods
Spectrum analysis
Spectrum Analysis, Raman - instrumentation
Spectrum Analysis, Raman - methods
Yersinia pestis
Yersinia pestis - chemistry
Yersinia pestis - classification
title Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens:  Signature Development and Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20Chemical%20Imaging%20Spectroscopy%20Reagentless%20Detection%20and%20Identification%20of%20Pathogens:%E2%80%89%20Signature%20Development%20and%20Evaluation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kalasinsky,%20Kathryn%20S&rft.date=2007-04-01&rft.volume=79&rft.issue=7&rft.spage=2658&rft.epage=2673&rft.pages=2658-2673&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0700575&rft_dat=%3Cproquest_cross%3E20806436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217889521&rft_id=info:pmid/17338507&rfr_iscdi=true