Encoding Light Intensity by the Cone Photoreceptor Synapse
How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter rel...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2005-11, Vol.48 (4), p.555-562 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 4 |
container_start_page | 555 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 48 |
creator | Choi, Sue-Yeon Borghuis, Bart Rea, Ruth Levitan, Edwin S. Sterling, Peter Kramer, Richard H. |
description | How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics. |
doi_str_mv | 10.1016/j.neuron.2005.09.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20792845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627305007786</els_id><sourcerecordid>3234662661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</originalsourceid><addsrcrecordid>eNp9kF1rFDEUhoModlv9ByIDgnczPfneeCHIUmthwUL1OswkZ7pZdpM1mRH235u6C4IXvXpvnvc9h4eQdxQ6ClRdb7uIc06xYwCyA9MBpS_IgoLRraDGvCQLWBrVKqb5BbksZQtAhTT0Nbmgilda8wX5dBNd8iE-NuvwuJmauzhhLGE6NsOxmTbYrFLE5n6TppTR4aFG83CM_aHgG_Jq7HcF357zivz8evNj9a1df7-9W31Zt04oObVc99r13gg9sHFk3A9CSoYa3MAGJnHpvASFoscROSy1MsKPXrLa8QNXlF-Rj6fdQ06_ZiyT3YficLfrI6a5WAbasKWQFfzwH7hNc471N0slcCUl_0uJE-VyKiXjaA857Pt8tBTsk1m7tSez9smsBWOrq1p7fx6fhz36f6Wzygp8PgFYXfwOmG1xAaNDH6q5yfoUnr_wB6Nxi0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503655345</pqid></control><display><type>article</type><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><source>MEDLINE</source><source>Cell Press Archives</source><source>ScienceDirect Freedom Collection (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</creator><creatorcontrib>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</creatorcontrib><description>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2005.09.011</identifier><identifier>PMID: 16301173</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Dose-Response Relationship, Radiation ; Fluorescent Dyes - pharmacokinetics ; Fluorescent Dyes - radiation effects ; In Vitro Techniques ; Labeling ; Lacertilia ; Light ; Lizards ; Microscopy ; Photoreceptors ; Poisson Distribution ; Pyridinium Compounds - pharmacokinetics ; Pyridinium Compounds - radiation effects ; Quaternary Ammonium Compounds - pharmacokinetics ; Quaternary Ammonium Compounds - radiation effects ; Retina ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Cone Photoreceptor Cells - radiation effects ; Software ; Studies ; Synapses - physiology ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - physiology ; Vision, Ocular - physiology ; Visual Pathways - physiology ; Zinc</subject><ispartof>Neuron (Cambridge, Mass.), 2005-11, Vol.48 (4), p.555-562</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 23, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</citedby><cites>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2005.09.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16301173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sue-Yeon</creatorcontrib><creatorcontrib>Borghuis, Bart</creatorcontrib><creatorcontrib>Rea, Ruth</creatorcontrib><creatorcontrib>Levitan, Edwin S.</creatorcontrib><creatorcontrib>Sterling, Peter</creatorcontrib><creatorcontrib>Kramer, Richard H.</creatorcontrib><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</description><subject>Animals</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Fluorescent Dyes - pharmacokinetics</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>In Vitro Techniques</subject><subject>Labeling</subject><subject>Lacertilia</subject><subject>Light</subject><subject>Lizards</subject><subject>Microscopy</subject><subject>Photoreceptors</subject><subject>Poisson Distribution</subject><subject>Pyridinium Compounds - pharmacokinetics</subject><subject>Pyridinium Compounds - radiation effects</subject><subject>Quaternary Ammonium Compounds - pharmacokinetics</subject><subject>Quaternary Ammonium Compounds - radiation effects</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Cone Photoreceptor Cells - radiation effects</subject><subject>Software</subject><subject>Studies</subject><subject>Synapses - physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - physiology</subject><subject>Vision, Ocular - physiology</subject><subject>Visual Pathways - physiology</subject><subject>Zinc</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1rFDEUhoModlv9ByIDgnczPfneeCHIUmthwUL1OswkZ7pZdpM1mRH235u6C4IXvXpvnvc9h4eQdxQ6ClRdb7uIc06xYwCyA9MBpS_IgoLRraDGvCQLWBrVKqb5BbksZQtAhTT0Nbmgilda8wX5dBNd8iE-NuvwuJmauzhhLGE6NsOxmTbYrFLE5n6TppTR4aFG83CM_aHgG_Jq7HcF357zivz8evNj9a1df7-9W31Zt04oObVc99r13gg9sHFk3A9CSoYa3MAGJnHpvASFoscROSy1MsKPXrLa8QNXlF-Rj6fdQ06_ZiyT3YficLfrI6a5WAbasKWQFfzwH7hNc471N0slcCUl_0uJE-VyKiXjaA857Pt8tBTsk1m7tSez9smsBWOrq1p7fx6fhz36f6Wzygp8PgFYXfwOmG1xAaNDH6q5yfoUnr_wB6Nxi0w</recordid><startdate>20051123</startdate><enddate>20051123</enddate><creator>Choi, Sue-Yeon</creator><creator>Borghuis, Bart</creator><creator>Rea, Ruth</creator><creator>Levitan, Edwin S.</creator><creator>Sterling, Peter</creator><creator>Kramer, Richard H.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20051123</creationdate><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><author>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Fluorescent Dyes - pharmacokinetics</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>In Vitro Techniques</topic><topic>Labeling</topic><topic>Lacertilia</topic><topic>Light</topic><topic>Lizards</topic><topic>Microscopy</topic><topic>Photoreceptors</topic><topic>Poisson Distribution</topic><topic>Pyridinium Compounds - pharmacokinetics</topic><topic>Pyridinium Compounds - radiation effects</topic><topic>Quaternary Ammonium Compounds - pharmacokinetics</topic><topic>Quaternary Ammonium Compounds - radiation effects</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Cone Photoreceptor Cells - radiation effects</topic><topic>Software</topic><topic>Studies</topic><topic>Synapses - physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - physiology</topic><topic>Vision, Ocular - physiology</topic><topic>Visual Pathways - physiology</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sue-Yeon</creatorcontrib><creatorcontrib>Borghuis, Bart</creatorcontrib><creatorcontrib>Rea, Ruth</creatorcontrib><creatorcontrib>Levitan, Edwin S.</creatorcontrib><creatorcontrib>Sterling, Peter</creatorcontrib><creatorcontrib>Kramer, Richard H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sue-Yeon</au><au>Borghuis, Bart</au><au>Rea, Ruth</au><au>Levitan, Edwin S.</au><au>Sterling, Peter</au><au>Kramer, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding Light Intensity by the Cone Photoreceptor Synapse</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2005-11-23</date><risdate>2005</risdate><volume>48</volume><issue>4</issue><spage>555</spage><epage>562</epage><pages>555-562</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16301173</pmid><doi>10.1016/j.neuron.2005.09.011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2005-11, Vol.48 (4), p.555-562 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_20792845 |
source | MEDLINE; Cell Press Archives; ScienceDirect Freedom Collection (Elsevier); EZB Electronic Journals Library |
subjects | Animals Dose-Response Relationship, Radiation Fluorescent Dyes - pharmacokinetics Fluorescent Dyes - radiation effects In Vitro Techniques Labeling Lacertilia Light Lizards Microscopy Photoreceptors Poisson Distribution Pyridinium Compounds - pharmacokinetics Pyridinium Compounds - radiation effects Quaternary Ammonium Compounds - pharmacokinetics Quaternary Ammonium Compounds - radiation effects Retina Retinal Cone Photoreceptor Cells - physiology Retinal Cone Photoreceptor Cells - radiation effects Software Studies Synapses - physiology Synaptic Vesicles - metabolism Synaptic Vesicles - physiology Vision, Ocular - physiology Visual Pathways - physiology Zinc |
title | Encoding Light Intensity by the Cone Photoreceptor Synapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20Light%20Intensity%20by%20the%20Cone%20Photoreceptor%20Synapse&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Choi,%20Sue-Yeon&rft.date=2005-11-23&rft.volume=48&rft.issue=4&rft.spage=555&rft.epage=562&rft.pages=555-562&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2005.09.011&rft_dat=%3Cproquest_cross%3E3234662661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503655345&rft_id=info:pmid/16301173&rft_els_id=S0896627305007786&rfr_iscdi=true |