Encoding Light Intensity by the Cone Photoreceptor Synapse

How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2005-11, Vol.48 (4), p.555-562
Hauptverfasser: Choi, Sue-Yeon, Borghuis, Bart, Rea, Ruth, Levitan, Edwin S., Sterling, Peter, Kramer, Richard H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 4
container_start_page 555
container_title Neuron (Cambridge, Mass.)
container_volume 48
creator Choi, Sue-Yeon
Borghuis, Bart
Rea, Ruth
Levitan, Edwin S.
Sterling, Peter
Kramer, Richard H.
description How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.
doi_str_mv 10.1016/j.neuron.2005.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20792845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627305007786</els_id><sourcerecordid>3234662661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</originalsourceid><addsrcrecordid>eNp9kF1rFDEUhoModlv9ByIDgnczPfneeCHIUmthwUL1OswkZ7pZdpM1mRH235u6C4IXvXpvnvc9h4eQdxQ6ClRdb7uIc06xYwCyA9MBpS_IgoLRraDGvCQLWBrVKqb5BbksZQtAhTT0Nbmgilda8wX5dBNd8iE-NuvwuJmauzhhLGE6NsOxmTbYrFLE5n6TppTR4aFG83CM_aHgG_Jq7HcF357zivz8evNj9a1df7-9W31Zt04oObVc99r13gg9sHFk3A9CSoYa3MAGJnHpvASFoscROSy1MsKPXrLa8QNXlF-Rj6fdQ06_ZiyT3YficLfrI6a5WAbasKWQFfzwH7hNc471N0slcCUl_0uJE-VyKiXjaA857Pt8tBTsk1m7tSez9smsBWOrq1p7fx6fhz36f6Wzygp8PgFYXfwOmG1xAaNDH6q5yfoUnr_wB6Nxi0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503655345</pqid></control><display><type>article</type><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><source>MEDLINE</source><source>Cell Press Archives</source><source>ScienceDirect Freedom Collection (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</creator><creatorcontrib>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</creatorcontrib><description>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2005.09.011</identifier><identifier>PMID: 16301173</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Dose-Response Relationship, Radiation ; Fluorescent Dyes - pharmacokinetics ; Fluorescent Dyes - radiation effects ; In Vitro Techniques ; Labeling ; Lacertilia ; Light ; Lizards ; Microscopy ; Photoreceptors ; Poisson Distribution ; Pyridinium Compounds - pharmacokinetics ; Pyridinium Compounds - radiation effects ; Quaternary Ammonium Compounds - pharmacokinetics ; Quaternary Ammonium Compounds - radiation effects ; Retina ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Cone Photoreceptor Cells - radiation effects ; Software ; Studies ; Synapses - physiology ; Synaptic Vesicles - metabolism ; Synaptic Vesicles - physiology ; Vision, Ocular - physiology ; Visual Pathways - physiology ; Zinc</subject><ispartof>Neuron (Cambridge, Mass.), 2005-11, Vol.48 (4), p.555-562</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Nov 23, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</citedby><cites>FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2005.09.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16301173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sue-Yeon</creatorcontrib><creatorcontrib>Borghuis, Bart</creatorcontrib><creatorcontrib>Rea, Ruth</creatorcontrib><creatorcontrib>Levitan, Edwin S.</creatorcontrib><creatorcontrib>Sterling, Peter</creatorcontrib><creatorcontrib>Kramer, Richard H.</creatorcontrib><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</description><subject>Animals</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Fluorescent Dyes - pharmacokinetics</subject><subject>Fluorescent Dyes - radiation effects</subject><subject>In Vitro Techniques</subject><subject>Labeling</subject><subject>Lacertilia</subject><subject>Light</subject><subject>Lizards</subject><subject>Microscopy</subject><subject>Photoreceptors</subject><subject>Poisson Distribution</subject><subject>Pyridinium Compounds - pharmacokinetics</subject><subject>Pyridinium Compounds - radiation effects</subject><subject>Quaternary Ammonium Compounds - pharmacokinetics</subject><subject>Quaternary Ammonium Compounds - radiation effects</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Cone Photoreceptor Cells - radiation effects</subject><subject>Software</subject><subject>Studies</subject><subject>Synapses - physiology</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptic Vesicles - physiology</subject><subject>Vision, Ocular - physiology</subject><subject>Visual Pathways - physiology</subject><subject>Zinc</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1rFDEUhoModlv9ByIDgnczPfneeCHIUmthwUL1OswkZ7pZdpM1mRH235u6C4IXvXpvnvc9h4eQdxQ6ClRdb7uIc06xYwCyA9MBpS_IgoLRraDGvCQLWBrVKqb5BbksZQtAhTT0Nbmgilda8wX5dBNd8iE-NuvwuJmauzhhLGE6NsOxmTbYrFLE5n6TppTR4aFG83CM_aHgG_Jq7HcF357zivz8evNj9a1df7-9W31Zt04oObVc99r13gg9sHFk3A9CSoYa3MAGJnHpvASFoscROSy1MsKPXrLa8QNXlF-Rj6fdQ06_ZiyT3YficLfrI6a5WAbasKWQFfzwH7hNc471N0slcCUl_0uJE-VyKiXjaA857Pt8tBTsk1m7tSez9smsBWOrq1p7fx6fhz36f6Wzygp8PgFYXfwOmG1xAaNDH6q5yfoUnr_wB6Nxi0w</recordid><startdate>20051123</startdate><enddate>20051123</enddate><creator>Choi, Sue-Yeon</creator><creator>Borghuis, Bart</creator><creator>Rea, Ruth</creator><creator>Levitan, Edwin S.</creator><creator>Sterling, Peter</creator><creator>Kramer, Richard H.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20051123</creationdate><title>Encoding Light Intensity by the Cone Photoreceptor Synapse</title><author>Choi, Sue-Yeon ; Borghuis, Bart ; Rea, Ruth ; Levitan, Edwin S. ; Sterling, Peter ; Kramer, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-37a7cad947b2ff23db4552e70cb2b25e8cd506e4aefe3087694dfd52caddb3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Fluorescent Dyes - pharmacokinetics</topic><topic>Fluorescent Dyes - radiation effects</topic><topic>In Vitro Techniques</topic><topic>Labeling</topic><topic>Lacertilia</topic><topic>Light</topic><topic>Lizards</topic><topic>Microscopy</topic><topic>Photoreceptors</topic><topic>Poisson Distribution</topic><topic>Pyridinium Compounds - pharmacokinetics</topic><topic>Pyridinium Compounds - radiation effects</topic><topic>Quaternary Ammonium Compounds - pharmacokinetics</topic><topic>Quaternary Ammonium Compounds - radiation effects</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Cone Photoreceptor Cells - radiation effects</topic><topic>Software</topic><topic>Studies</topic><topic>Synapses - physiology</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptic Vesicles - physiology</topic><topic>Vision, Ocular - physiology</topic><topic>Visual Pathways - physiology</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sue-Yeon</creatorcontrib><creatorcontrib>Borghuis, Bart</creatorcontrib><creatorcontrib>Rea, Ruth</creatorcontrib><creatorcontrib>Levitan, Edwin S.</creatorcontrib><creatorcontrib>Sterling, Peter</creatorcontrib><creatorcontrib>Kramer, Richard H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sue-Yeon</au><au>Borghuis, Bart</au><au>Rea, Ruth</au><au>Levitan, Edwin S.</au><au>Sterling, Peter</au><au>Kramer, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding Light Intensity by the Cone Photoreceptor Synapse</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2005-11-23</date><risdate>2005</risdate><volume>48</volume><issue>4</issue><spage>555</spage><epage>562</epage><pages>555-562</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>How cone synapses encode light intensity determines the precision of information transmission at the first synapse on the visual pathway. Although it is known that cone photoreceptors hyperpolarize to light over 4–5 log units of intensity, the relationship between light intensity and transmitter release at the cone synapse has not been determined. Here, we use two-photon microscopy to visualize release of the synaptic vesicle dye FM1-43 from cone terminals in the intact lizard retina, in response to different stimulus light intensities. We then employ electron microscopy to translate these measurements into vesicle release rates. We find that from darkness to bright light, release decreases from 49 to ∼2 vesicles per 200 ms; therefore, cones compress their 10,000-fold operating range for phototransduction into a 25-fold range for synaptic vesicle release. Tonic release encodes ten distinguishable intensity levels, skewed to most finely represent bright light, assuming release obeys Poisson statistics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16301173</pmid><doi>10.1016/j.neuron.2005.09.011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2005-11, Vol.48 (4), p.555-562
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_20792845
source MEDLINE; Cell Press Archives; ScienceDirect Freedom Collection (Elsevier); EZB Electronic Journals Library
subjects Animals
Dose-Response Relationship, Radiation
Fluorescent Dyes - pharmacokinetics
Fluorescent Dyes - radiation effects
In Vitro Techniques
Labeling
Lacertilia
Light
Lizards
Microscopy
Photoreceptors
Poisson Distribution
Pyridinium Compounds - pharmacokinetics
Pyridinium Compounds - radiation effects
Quaternary Ammonium Compounds - pharmacokinetics
Quaternary Ammonium Compounds - radiation effects
Retina
Retinal Cone Photoreceptor Cells - physiology
Retinal Cone Photoreceptor Cells - radiation effects
Software
Studies
Synapses - physiology
Synaptic Vesicles - metabolism
Synaptic Vesicles - physiology
Vision, Ocular - physiology
Visual Pathways - physiology
Zinc
title Encoding Light Intensity by the Cone Photoreceptor Synapse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A29%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20Light%20Intensity%20by%20the%20Cone%20Photoreceptor%20Synapse&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Choi,%20Sue-Yeon&rft.date=2005-11-23&rft.volume=48&rft.issue=4&rft.spage=555&rft.epage=562&rft.pages=555-562&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2005.09.011&rft_dat=%3Cproquest_cross%3E3234662661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503655345&rft_id=info:pmid/16301173&rft_els_id=S0896627305007786&rfr_iscdi=true