Resurfacing of Titan by ammonia-water cryomagma

The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395–412]. To date, models of ammonia-water resurfacing have not been tied to specific e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2008-07, Vol.196 (1), p.216-224
Hauptverfasser: Mitri, Giuseppe, Showman, Adam P., Lunine, Jonathan I., Lopes, Rosaly M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 1
container_start_page 216
container_title Icarus (New York, N.Y. 1962)
container_volume 196
creator Mitri, Giuseppe
Showman, Adam P.
Lunine, Jonathan I.
Lopes, Rosaly M.C.
description The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395–412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia–water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid–solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.
doi_str_mv 10.1016/j.icarus.2008.02.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20787002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019103508001267</els_id><sourcerecordid>20787002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-1b1895aea4f52c8b0928bab4754cefa169e85bcd6ff7f6a816aaf33a974579a93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMVsdDfTm0wyk2wEKb6gIEhdhztpUlLmUZMZpf_eKVNcCgfO5pxzuR8htxQyCrRY7DJvMAwxYwAyAzaKn5EZBQUpK3h-TmYAVKUUcnFJrmLcAYCQKp-RxYeNQ3BofLtNOpesfY9tUh0SbJqu9Zj-YG9DYsKha3Db4DW5cFhHe3PyOfl8flovX9PV-8vb8nGVIhdFn9KKSiXQIneCGVmBYrLCipeCG-uQFspKUZlN4VzpCpS0QHR5jqrkolSo8jm5n3b3ofsabOx146OxdY2t7YaoGZSyBGBjkE9BE7oYg3V6H3yD4aAp6CMdvdMTHX2ko4GN4mPt7rSP0WDtArbGx78uAy44iOP8w5Sz47Pf3gYdjbetsRsfrOn1pvP_H_oF9098Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20787002</pqid></control><display><type>article</type><title>Resurfacing of Titan by ammonia-water cryomagma</title><source>Elsevier ScienceDirect Journals</source><creator>Mitri, Giuseppe ; Showman, Adam P. ; Lunine, Jonathan I. ; Lopes, Rosaly M.C.</creator><creatorcontrib>Mitri, Giuseppe ; Showman, Adam P. ; Lunine, Jonathan I. ; Lopes, Rosaly M.C.</creatorcontrib><description>The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395–412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia–water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid–solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2008.02.024</identifier><identifier>CODEN: ICRSA5</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; Geophysics ; Ices ; Interiors ; Satellites ; Saturn ; Solar system ; surfaces ; Titan ; Volcanism</subject><ispartof>Icarus (New York, N.Y. 1962), 2008-07, Vol.196 (1), p.216-224</ispartof><rights>2008 Elsevier Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-1b1895aea4f52c8b0928bab4754cefa169e85bcd6ff7f6a816aaf33a974579a93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019103508001267$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20454052$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitri, Giuseppe</creatorcontrib><creatorcontrib>Showman, Adam P.</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Lopes, Rosaly M.C.</creatorcontrib><title>Resurfacing of Titan by ammonia-water cryomagma</title><title>Icarus (New York, N.Y. 1962)</title><description>The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395–412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia–water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid–solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geophysics</subject><subject>Ices</subject><subject>Interiors</subject><subject>Satellites</subject><subject>Saturn</subject><subject>Solar system</subject><subject>surfaces</subject><subject>Titan</subject><subject>Volcanism</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMVsdDfTm0wyk2wEKb6gIEhdhztpUlLmUZMZpf_eKVNcCgfO5pxzuR8htxQyCrRY7DJvMAwxYwAyAzaKn5EZBQUpK3h-TmYAVKUUcnFJrmLcAYCQKp-RxYeNQ3BofLtNOpesfY9tUh0SbJqu9Zj-YG9DYsKha3Db4DW5cFhHe3PyOfl8flovX9PV-8vb8nGVIhdFn9KKSiXQIneCGVmBYrLCipeCG-uQFspKUZlN4VzpCpS0QHR5jqrkolSo8jm5n3b3ofsabOx146OxdY2t7YaoGZSyBGBjkE9BE7oYg3V6H3yD4aAp6CMdvdMTHX2ko4GN4mPt7rSP0WDtArbGx78uAy44iOP8w5Sz47Pf3gYdjbetsRsfrOn1pvP_H_oF9098Ng</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Mitri, Giuseppe</creator><creator>Showman, Adam P.</creator><creator>Lunine, Jonathan I.</creator><creator>Lopes, Rosaly M.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080701</creationdate><title>Resurfacing of Titan by ammonia-water cryomagma</title><author>Mitri, Giuseppe ; Showman, Adam P. ; Lunine, Jonathan I. ; Lopes, Rosaly M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-1b1895aea4f52c8b0928bab4754cefa169e85bcd6ff7f6a816aaf33a974579a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geophysics</topic><topic>Ices</topic><topic>Interiors</topic><topic>Satellites</topic><topic>Saturn</topic><topic>Solar system</topic><topic>surfaces</topic><topic>Titan</topic><topic>Volcanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitri, Giuseppe</creatorcontrib><creatorcontrib>Showman, Adam P.</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Lopes, Rosaly M.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitri, Giuseppe</au><au>Showman, Adam P.</au><au>Lunine, Jonathan I.</au><au>Lopes, Rosaly M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resurfacing of Titan by ammonia-water cryomagma</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>196</volume><issue>1</issue><spage>216</spage><epage>224</epage><pages>216-224</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><coden>ICRSA5</coden><abstract>The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395–412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia–water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid–solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2008.02.024</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2008-07, Vol.196 (1), p.216-224
issn 0019-1035
1090-2643
language eng
recordid cdi_proquest_miscellaneous_20787002
source Elsevier ScienceDirect Journals
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
Geophysics
Ices
Interiors
Satellites
Saturn
Solar system
surfaces
Titan
Volcanism
title Resurfacing of Titan by ammonia-water cryomagma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resurfacing%20of%20Titan%20by%20ammonia-water%20cryomagma&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Mitri,%20Giuseppe&rft.date=2008-07-01&rft.volume=196&rft.issue=1&rft.spage=216&rft.epage=224&rft.pages=216-224&rft.issn=0019-1035&rft.eissn=1090-2643&rft.coden=ICRSA5&rft_id=info:doi/10.1016/j.icarus.2008.02.024&rft_dat=%3Cproquest_cross%3E20787002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20787002&rft_id=info:pmid/&rft_els_id=S0019103508001267&rfr_iscdi=true