Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy

Objectives To develop and validate a prognostic model of integrating whole-tumour apparent diffusion coefficient (ADC) from pretreatment diffusion-weighted (DW) magnetic resonance (MR) imaging with human papillomavirus (HPV) genotyping in predicting the overall survival (OS) and disease-free surviva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2019-02, Vol.29 (2), p.556-565
Hauptverfasser: Lin, Gigin, Yang, Lan-Yan, Lin, Yu-Chun, Huang, Yu-Ting, Liu, Feng-Yuan, Wang, Chun-Chieh, Lu, Hsin-Ying, Chiang, Hsin-Ju, Chen, Yu-Ruei, Wu, Ren-Chin, Ng, Koon-Kwan, Hong, Ji-Hong, Yen, Tzu-Chen, Lai, Chyong-Huey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 565
container_issue 2
container_start_page 556
container_title European radiology
container_volume 29
creator Lin, Gigin
Yang, Lan-Yan
Lin, Yu-Chun
Huang, Yu-Ting
Liu, Feng-Yuan
Wang, Chun-Chieh
Lu, Hsin-Ying
Chiang, Hsin-Ju
Chen, Yu-Ruei
Wu, Ren-Chin
Ng, Koon-Kwan
Hong, Ji-Hong
Yen, Tzu-Chen
Lai, Chyong-Huey
description Objectives To develop and validate a prognostic model of integrating whole-tumour apparent diffusion coefficient (ADC) from pretreatment diffusion-weighted (DW) magnetic resonance (MR) imaging with human papillomavirus (HPV) genotyping in predicting the overall survival (OS) and disease-free survival (DFS) for women with stage IB–IV cervical cancer following concurrent chemoradiotherapy (CCRT). Methods We retrospectively analysed three prospectively collected cohorts comprising 300 patients with stage IB–IV cervical cancer treated with CCRT in 2007–2014 and filtered 134 female patients who underwent MR imaging at 3.0 T for final analysis (age, 24–92 years; median, 54 years). Univariate and multivariate Cox regression analyses were used to evaluate the whole-tumour ADC histogram parameters, HPV genotyping and relevant clinical variables in predicting OS and DFS. The dataset was randomly split into training ( n = 88) and testing ( n = 46) datasets for construction and independent bootstrap validation of the models. Results The median follow-up time for surviving patients was 69 months (range, 9–126 months). Non-squamous cell type, ADC 10
doi_str_mv 10.1007/s00330-018-5651-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2078593400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078593400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-66fa888fc11d1805818a2f0ccc4d45844afb3df8aa47d5bdb7ba52e95eca2ca03</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEokvhB3BBlrhwIDBOnMQ5QgV0pUr0AL1GE3ucdZXYwU5a7b_jp-FoC0hInCw9f--NPS_LXnJ4xwGa9xGgLCEHLvOqrnguHmU7Lsoi5yDF42wHbSnzpm3FWfYsxlsAaLlonmZnJUDFuSh22c_r4Afn42IVm7ymkfUYSTPv2ISDo00PFL1Dp4jZpFk3vGX3Bz9SvqyTXwPDecZAbmHaGrNGm7zKkzFW2U29w3GlyNBpdnl9wwZyfjnOKYYZH1hccCC2_5jvb5iicGcVjkxt0wKbcdkSYgLH0d9vFnWgyQfU1i8HCjgfn2dPDI6RXjyc59n3z5--XVzmV1-_7C8-XOWqbIolr2uDUkqjONdcQiW5xMKAUkpoUUkh0PSlNhJRNLrqdd_0WBXUVqSwUAjlefbmlDsH_yP9Z-kmGxWNIzrya-wKaGTVlgI29PU_6G1ak0uv6wpetTWIti4SxU-UCj7GQKabQ9pvOHYcuq3e7lRvl-rttno7kTyvHpLXfiL9x_G7zwQUJyCmKzdQ-Dv6_6m_AOjitRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159604962</pqid></control><display><type>article</type><title>Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lin, Gigin ; Yang, Lan-Yan ; Lin, Yu-Chun ; Huang, Yu-Ting ; Liu, Feng-Yuan ; Wang, Chun-Chieh ; Lu, Hsin-Ying ; Chiang, Hsin-Ju ; Chen, Yu-Ruei ; Wu, Ren-Chin ; Ng, Koon-Kwan ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Lai, Chyong-Huey</creator><creatorcontrib>Lin, Gigin ; Yang, Lan-Yan ; Lin, Yu-Chun ; Huang, Yu-Ting ; Liu, Feng-Yuan ; Wang, Chun-Chieh ; Lu, Hsin-Ying ; Chiang, Hsin-Ju ; Chen, Yu-Ruei ; Wu, Ren-Chin ; Ng, Koon-Kwan ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Lai, Chyong-Huey</creatorcontrib><description>Objectives To develop and validate a prognostic model of integrating whole-tumour apparent diffusion coefficient (ADC) from pretreatment diffusion-weighted (DW) magnetic resonance (MR) imaging with human papillomavirus (HPV) genotyping in predicting the overall survival (OS) and disease-free survival (DFS) for women with stage IB–IV cervical cancer following concurrent chemoradiotherapy (CCRT). Methods We retrospectively analysed three prospectively collected cohorts comprising 300 patients with stage IB–IV cervical cancer treated with CCRT in 2007–2014 and filtered 134 female patients who underwent MR imaging at 3.0 T for final analysis (age, 24–92 years; median, 54 years). Univariate and multivariate Cox regression analyses were used to evaluate the whole-tumour ADC histogram parameters, HPV genotyping and relevant clinical variables in predicting OS and DFS. The dataset was randomly split into training ( n = 88) and testing ( n = 46) datasets for construction and independent bootstrap validation of the models. Results The median follow-up time for surviving patients was 69 months (range, 9–126 months). Non-squamous cell type, ADC 10 &lt;0.77 × 10 -3 mm 2 /s, T3-4, M1 stage and high-risk HPV status were selected to generate a model, in which the OS and DFS for the low, intermediate and high-risk groups were significantly stratified ( p &lt; 0.0001). The prognostic model improved the prediction significantly compared with the International Federation of Gynaecology and Obstetrics (FIGO) stage for both the training and independent testing datasets ( p &lt; 0.0001). Conclusions The prognostic model based on integrated clinical and imaging data could be a useful clinical biomarker to predict OS and DFS in patients with stage IB–IV cervical cancer treated with CCRT. Key points • ADC 10 is the best prognostic factor among ADC parameters in cervical cancer treated with CCRT • A novel prognostic model was built based on histology, ADC 10 , T and M stage and HPV status • The prognostic model outperforms FIGO stage in the survival prediction</description><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-018-5651-4</identifier><identifier>PMID: 30051142</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Biomarkers ; Cancer ; Cervical cancer ; Cervix ; Chemoradiotherapy ; Chemoradiotherapy - methods ; Chemotherapy ; Datasets ; Diagnostic Radiology ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; Female ; Genotype ; Genotyping ; Genotyping Techniques - methods ; Health risk assessment ; Histograms ; Histology ; Human papillomavirus ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Internal Medicine ; Interventional Radiology ; Kaplan-Meier Estimate ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Neoplasm Staging ; Neuroradiology ; Obstetrics ; Oncology ; Papillomaviridae - classification ; Papillomaviridae - genetics ; Parameters ; Patients ; Predictions ; Prognosis ; Radiation therapy ; Radiology ; Regression analysis ; Resonance ; Retrospective Studies ; Risk groups ; Survival ; Training ; Tumors ; Ultrasound ; Uterine Cervical Neoplasms - diagnostic imaging ; Uterine Cervical Neoplasms - pathology ; Uterine Cervical Neoplasms - therapy ; Uterine Cervical Neoplasms - virology ; Young Adult</subject><ispartof>European radiology, 2019-02, Vol.29 (2), p.556-565</ispartof><rights>European Society of Radiology 2018</rights><rights>European Radiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-66fa888fc11d1805818a2f0ccc4d45844afb3df8aa47d5bdb7ba52e95eca2ca03</citedby><cites>FETCH-LOGICAL-c372t-66fa888fc11d1805818a2f0ccc4d45844afb3df8aa47d5bdb7ba52e95eca2ca03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-018-5651-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-018-5651-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30051142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Gigin</creatorcontrib><creatorcontrib>Yang, Lan-Yan</creatorcontrib><creatorcontrib>Lin, Yu-Chun</creatorcontrib><creatorcontrib>Huang, Yu-Ting</creatorcontrib><creatorcontrib>Liu, Feng-Yuan</creatorcontrib><creatorcontrib>Wang, Chun-Chieh</creatorcontrib><creatorcontrib>Lu, Hsin-Ying</creatorcontrib><creatorcontrib>Chiang, Hsin-Ju</creatorcontrib><creatorcontrib>Chen, Yu-Ruei</creatorcontrib><creatorcontrib>Wu, Ren-Chin</creatorcontrib><creatorcontrib>Ng, Koon-Kwan</creatorcontrib><creatorcontrib>Hong, Ji-Hong</creatorcontrib><creatorcontrib>Yen, Tzu-Chen</creatorcontrib><creatorcontrib>Lai, Chyong-Huey</creatorcontrib><title>Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To develop and validate a prognostic model of integrating whole-tumour apparent diffusion coefficient (ADC) from pretreatment diffusion-weighted (DW) magnetic resonance (MR) imaging with human papillomavirus (HPV) genotyping in predicting the overall survival (OS) and disease-free survival (DFS) for women with stage IB–IV cervical cancer following concurrent chemoradiotherapy (CCRT). Methods We retrospectively analysed three prospectively collected cohorts comprising 300 patients with stage IB–IV cervical cancer treated with CCRT in 2007–2014 and filtered 134 female patients who underwent MR imaging at 3.0 T for final analysis (age, 24–92 years; median, 54 years). Univariate and multivariate Cox regression analyses were used to evaluate the whole-tumour ADC histogram parameters, HPV genotyping and relevant clinical variables in predicting OS and DFS. The dataset was randomly split into training ( n = 88) and testing ( n = 46) datasets for construction and independent bootstrap validation of the models. Results The median follow-up time for surviving patients was 69 months (range, 9–126 months). Non-squamous cell type, ADC 10 &lt;0.77 × 10 -3 mm 2 /s, T3-4, M1 stage and high-risk HPV status were selected to generate a model, in which the OS and DFS for the low, intermediate and high-risk groups were significantly stratified ( p &lt; 0.0001). The prognostic model improved the prediction significantly compared with the International Federation of Gynaecology and Obstetrics (FIGO) stage for both the training and independent testing datasets ( p &lt; 0.0001). Conclusions The prognostic model based on integrated clinical and imaging data could be a useful clinical biomarker to predict OS and DFS in patients with stage IB–IV cervical cancer treated with CCRT. Key points • ADC 10 is the best prognostic factor among ADC parameters in cervical cancer treated with CCRT • A novel prognostic model was built based on histology, ADC 10 , T and M stage and HPV status • The prognostic model outperforms FIGO stage in the survival prediction</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Chemoradiotherapy</subject><subject>Chemoradiotherapy - methods</subject><subject>Chemotherapy</subject><subject>Datasets</subject><subject>Diagnostic Radiology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Female</subject><subject>Genotype</subject><subject>Genotyping</subject><subject>Genotyping Techniques - methods</subject><subject>Health risk assessment</subject><subject>Histograms</subject><subject>Histology</subject><subject>Human papillomavirus</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Kaplan-Meier Estimate</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Neoplasm Staging</subject><subject>Neuroradiology</subject><subject>Obstetrics</subject><subject>Oncology</subject><subject>Papillomaviridae - classification</subject><subject>Papillomaviridae - genetics</subject><subject>Parameters</subject><subject>Patients</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Resonance</subject><subject>Retrospective Studies</subject><subject>Risk groups</subject><subject>Survival</subject><subject>Training</subject><subject>Tumors</subject><subject>Ultrasound</subject><subject>Uterine Cervical Neoplasms - diagnostic imaging</subject><subject>Uterine Cervical Neoplasms - pathology</subject><subject>Uterine Cervical Neoplasms - therapy</subject><subject>Uterine Cervical Neoplasms - virology</subject><subject>Young Adult</subject><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFv1DAQhSMEokvhB3BBlrhwIDBOnMQ5QgV0pUr0AL1GE3ucdZXYwU5a7b_jp-FoC0hInCw9f--NPS_LXnJ4xwGa9xGgLCEHLvOqrnguHmU7Lsoi5yDF42wHbSnzpm3FWfYsxlsAaLlonmZnJUDFuSh22c_r4Afn42IVm7ymkfUYSTPv2ISDo00PFL1Dp4jZpFk3vGX3Bz9SvqyTXwPDecZAbmHaGrNGm7zKkzFW2U29w3GlyNBpdnl9wwZyfjnOKYYZH1hccCC2_5jvb5iicGcVjkxt0wKbcdkSYgLH0d9vFnWgyQfU1i8HCjgfn2dPDI6RXjyc59n3z5--XVzmV1-_7C8-XOWqbIolr2uDUkqjONdcQiW5xMKAUkpoUUkh0PSlNhJRNLrqdd_0WBXUVqSwUAjlefbmlDsH_yP9Z-kmGxWNIzrya-wKaGTVlgI29PU_6G1ak0uv6wpetTWIti4SxU-UCj7GQKabQ9pvOHYcuq3e7lRvl-rttno7kTyvHpLXfiL9x_G7zwQUJyCmKzdQ-Dv6_6m_AOjitRU</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Lin, Gigin</creator><creator>Yang, Lan-Yan</creator><creator>Lin, Yu-Chun</creator><creator>Huang, Yu-Ting</creator><creator>Liu, Feng-Yuan</creator><creator>Wang, Chun-Chieh</creator><creator>Lu, Hsin-Ying</creator><creator>Chiang, Hsin-Ju</creator><creator>Chen, Yu-Ruei</creator><creator>Wu, Ren-Chin</creator><creator>Ng, Koon-Kwan</creator><creator>Hong, Ji-Hong</creator><creator>Yen, Tzu-Chen</creator><creator>Lai, Chyong-Huey</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy</title><author>Lin, Gigin ; Yang, Lan-Yan ; Lin, Yu-Chun ; Huang, Yu-Ting ; Liu, Feng-Yuan ; Wang, Chun-Chieh ; Lu, Hsin-Ying ; Chiang, Hsin-Ju ; Chen, Yu-Ruei ; Wu, Ren-Chin ; Ng, Koon-Kwan ; Hong, Ji-Hong ; Yen, Tzu-Chen ; Lai, Chyong-Huey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-66fa888fc11d1805818a2f0ccc4d45844afb3df8aa47d5bdb7ba52e95eca2ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Chemoradiotherapy</topic><topic>Chemoradiotherapy - methods</topic><topic>Chemotherapy</topic><topic>Datasets</topic><topic>Diagnostic Radiology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Female</topic><topic>Genotype</topic><topic>Genotyping</topic><topic>Genotyping Techniques - methods</topic><topic>Health risk assessment</topic><topic>Histograms</topic><topic>Histology</topic><topic>Human papillomavirus</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Kaplan-Meier Estimate</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Neoplasm Staging</topic><topic>Neuroradiology</topic><topic>Obstetrics</topic><topic>Oncology</topic><topic>Papillomaviridae - classification</topic><topic>Papillomaviridae - genetics</topic><topic>Parameters</topic><topic>Patients</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Resonance</topic><topic>Retrospective Studies</topic><topic>Risk groups</topic><topic>Survival</topic><topic>Training</topic><topic>Tumors</topic><topic>Ultrasound</topic><topic>Uterine Cervical Neoplasms - diagnostic imaging</topic><topic>Uterine Cervical Neoplasms - pathology</topic><topic>Uterine Cervical Neoplasms - therapy</topic><topic>Uterine Cervical Neoplasms - virology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Gigin</creatorcontrib><creatorcontrib>Yang, Lan-Yan</creatorcontrib><creatorcontrib>Lin, Yu-Chun</creatorcontrib><creatorcontrib>Huang, Yu-Ting</creatorcontrib><creatorcontrib>Liu, Feng-Yuan</creatorcontrib><creatorcontrib>Wang, Chun-Chieh</creatorcontrib><creatorcontrib>Lu, Hsin-Ying</creatorcontrib><creatorcontrib>Chiang, Hsin-Ju</creatorcontrib><creatorcontrib>Chen, Yu-Ruei</creatorcontrib><creatorcontrib>Wu, Ren-Chin</creatorcontrib><creatorcontrib>Ng, Koon-Kwan</creatorcontrib><creatorcontrib>Hong, Ji-Hong</creatorcontrib><creatorcontrib>Yen, Tzu-Chen</creatorcontrib><creatorcontrib>Lai, Chyong-Huey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Gigin</au><au>Yang, Lan-Yan</au><au>Lin, Yu-Chun</au><au>Huang, Yu-Ting</au><au>Liu, Feng-Yuan</au><au>Wang, Chun-Chieh</au><au>Lu, Hsin-Ying</au><au>Chiang, Hsin-Ju</au><au>Chen, Yu-Ruei</au><au>Wu, Ren-Chin</au><au>Ng, Koon-Kwan</au><au>Hong, Ji-Hong</au><au>Yen, Tzu-Chen</au><au>Lai, Chyong-Huey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>29</volume><issue>2</issue><spage>556</spage><epage>565</epage><pages>556-565</pages><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To develop and validate a prognostic model of integrating whole-tumour apparent diffusion coefficient (ADC) from pretreatment diffusion-weighted (DW) magnetic resonance (MR) imaging with human papillomavirus (HPV) genotyping in predicting the overall survival (OS) and disease-free survival (DFS) for women with stage IB–IV cervical cancer following concurrent chemoradiotherapy (CCRT). Methods We retrospectively analysed three prospectively collected cohorts comprising 300 patients with stage IB–IV cervical cancer treated with CCRT in 2007–2014 and filtered 134 female patients who underwent MR imaging at 3.0 T for final analysis (age, 24–92 years; median, 54 years). Univariate and multivariate Cox regression analyses were used to evaluate the whole-tumour ADC histogram parameters, HPV genotyping and relevant clinical variables in predicting OS and DFS. The dataset was randomly split into training ( n = 88) and testing ( n = 46) datasets for construction and independent bootstrap validation of the models. Results The median follow-up time for surviving patients was 69 months (range, 9–126 months). Non-squamous cell type, ADC 10 &lt;0.77 × 10 -3 mm 2 /s, T3-4, M1 stage and high-risk HPV status were selected to generate a model, in which the OS and DFS for the low, intermediate and high-risk groups were significantly stratified ( p &lt; 0.0001). The prognostic model improved the prediction significantly compared with the International Federation of Gynaecology and Obstetrics (FIGO) stage for both the training and independent testing datasets ( p &lt; 0.0001). Conclusions The prognostic model based on integrated clinical and imaging data could be a useful clinical biomarker to predict OS and DFS in patients with stage IB–IV cervical cancer treated with CCRT. Key points • ADC 10 is the best prognostic factor among ADC parameters in cervical cancer treated with CCRT • A novel prognostic model was built based on histology, ADC 10 , T and M stage and HPV status • The prognostic model outperforms FIGO stage in the survival prediction</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30051142</pmid><doi>10.1007/s00330-018-5651-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0938-7994
ispartof European radiology, 2019-02, Vol.29 (2), p.556-565
issn 0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2078593400
source MEDLINE; SpringerNature Journals
subjects Adult
Aged
Aged, 80 and over
Biomarkers
Cancer
Cervical cancer
Cervix
Chemoradiotherapy
Chemoradiotherapy - methods
Chemotherapy
Datasets
Diagnostic Radiology
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Female
Genotype
Genotyping
Genotyping Techniques - methods
Health risk assessment
Histograms
Histology
Human papillomavirus
Humans
Image Interpretation, Computer-Assisted - methods
Imaging
Internal Medicine
Interventional Radiology
Kaplan-Meier Estimate
Magnetic resonance imaging
Mathematical models
Medical imaging
Medical prognosis
Medicine
Medicine & Public Health
Middle Aged
Neoplasm Staging
Neuroradiology
Obstetrics
Oncology
Papillomaviridae - classification
Papillomaviridae - genetics
Parameters
Patients
Predictions
Prognosis
Radiation therapy
Radiology
Regression analysis
Resonance
Retrospective Studies
Risk groups
Survival
Training
Tumors
Ultrasound
Uterine Cervical Neoplasms - diagnostic imaging
Uterine Cervical Neoplasms - pathology
Uterine Cervical Neoplasms - therapy
Uterine Cervical Neoplasms - virology
Young Adult
title Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prognostic%20model%20based%20on%20magnetic%20resonance%20imaging,%20whole-tumour%20apparent%20diffusion%20coefficient%20values%20and%20HPV%20genotyping%20for%20stage%20IB-IV%20cervical%20cancer%20patients%20following%20chemoradiotherapy&rft.jtitle=European%20radiology&rft.au=Lin,%20Gigin&rft.date=2019-02-01&rft.volume=29&rft.issue=2&rft.spage=556&rft.epage=565&rft.pages=556-565&rft.issn=0938-7994&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-018-5651-4&rft_dat=%3Cproquest_cross%3E2078593400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159604962&rft_id=info:pmid/30051142&rfr_iscdi=true