Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem
Summary Sufficient dimension reduction (SDR) continues to be an active field of research. When estimating the central subspace (CS), inverse regression based SDR methods involve solving a generalized eigenvalue problem, which can be problematic under the large‐p‐small‐n situation. In recent years, n...
Gespeichert in:
Veröffentlicht in: | Biometrics 2019-03, Vol.75 (1), p.245-255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 245 |
container_title | Biometrics |
container_volume | 75 |
creator | Hung, Hung Huang, Su‐Yun |
description | Summary
Sufficient dimension reduction (SDR) continues to be an active field of research. When estimating the central subspace (CS), inverse regression based SDR methods involve solving a generalized eigenvalue problem, which can be problematic under the large‐p‐small‐n situation. In recent years, new techniques have emerged in numerical linear algebra, called randomized algorithms or random sketching, for high‐dimensional and large scale problems. To overcome the large‐p‐small‐n SDR problem, we combine the idea of statistical inference with random sketching to propose a new SDR method, called integrated random‐partition SDR (iRP‐SDR). Our method consists of the following three steps: (i) Randomly partition the covariates into subsets to construct an envelope subspace with low dimension. (ii) Obtain a sketch of the CS by applying a conventional SDR method within the constructed envelope subspace. (iii) Repeat the above two steps many times and integrate these multiple sketches to form the final estimate of the CS. After describing the details of these steps, the asymptotic properties of iRP‐SDR are established. Unlike existing methods, iRP‐SDR does not involve the determination of the structural dimension until the last stage, which makes it more adaptive to a high‐dimensional setting. The advantageous performance of iRP‐SDR is demonstrated via simulation studies and a practical example analyzing EEG data. |
doi_str_mv | 10.1111/biom.12926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2078585532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220837112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3936-ec08c05fc70e335ea33d25927838d632b3ebdc6244177b08bf8747d44aa7656c3</originalsourceid><addsrcrecordid>eNp9kM1KxDAQx4Mo7rp68QGk4EWErvlomu5RFz8WVjyo4EEIaTrVLP1Yk1bZm4_gM_okpnb14MGBYTIzP_4Z_gjtEzwmPk5SU5djQic03kBDwiMS4ojiTTTEGMchi8jDAO04t_DthGO6jQYMY06poEP0eNvmudEGqibITAmVM3UVWMha3XSvV6MCq6qsLj_fP5bKNqYbuyCvbdA8Q1Ao-wTdyqcrVVH4WgVLW6cFlLtoK1eFg711HaH7i_O76VU4v7mcTU_noWYTFoegcaIxz7XAwBgHxVhG-YSKhCVZzGjKIM10TKOICJHiJM0TEYksipQSMY81G6GjXtf_-9KCa2RpnIaiUBXUrZMUi4QnnDPq0cM_6KJubeWvk5RSnDBBSEcd95S2tXMWcrm0plR2JQmWneey81x-e-7hg7Vkm5aQ_aI_JnuA9MCbKWD1j5Q8m91c96JfSmWPpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220837112</pqid></control><display><type>article</type><title>Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Hung, Hung ; Huang, Su‐Yun</creator><creatorcontrib>Hung, Hung ; Huang, Su‐Yun</creatorcontrib><description>Summary
Sufficient dimension reduction (SDR) continues to be an active field of research. When estimating the central subspace (CS), inverse regression based SDR methods involve solving a generalized eigenvalue problem, which can be problematic under the large‐p‐small‐n situation. In recent years, new techniques have emerged in numerical linear algebra, called randomized algorithms or random sketching, for high‐dimensional and large scale problems. To overcome the large‐p‐small‐n SDR problem, we combine the idea of statistical inference with random sketching to propose a new SDR method, called integrated random‐partition SDR (iRP‐SDR). Our method consists of the following three steps: (i) Randomly partition the covariates into subsets to construct an envelope subspace with low dimension. (ii) Obtain a sketch of the CS by applying a conventional SDR method within the constructed envelope subspace. (iii) Repeat the above two steps many times and integrate these multiple sketches to form the final estimate of the CS. After describing the details of these steps, the asymptotic properties of iRP‐SDR are established. Unlike existing methods, iRP‐SDR does not involve the determination of the structural dimension until the last stage, which makes it more adaptive to a high‐dimensional setting. The advantageous performance of iRP‐SDR is demonstrated via simulation studies and a practical example analyzing EEG data.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12926</identifier><identifier>PMID: 30052272</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Alcoholism - pathology ; Algorithms ; Asymptotic methods ; Asymptotic properties ; Brain - drug effects ; Computer Simulation ; Distance correlation screening ; Eigenvalues ; Electroencephalography - statistics & numerical data ; Humans ; Linear algebra ; Machine Learning ; Models, Theoretical ; Partitions (mathematics) ; Random sketching ; Randomized algorithm ; Random‐partition ; Reduction ; Regression analysis ; Sketches ; Statistical analysis ; Statistical inference ; Subspaces ; Sufficient dimension reduction ; Sure screening property</subject><ispartof>Biometrics, 2019-03, Vol.75 (1), p.245-255</ispartof><rights>2018, The International Biometric Society</rights><rights>2018, The International Biometric Society.</rights><rights>2019 International Biometric Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3936-ec08c05fc70e335ea33d25927838d632b3ebdc6244177b08bf8747d44aa7656c3</citedby><cites>FETCH-LOGICAL-c3936-ec08c05fc70e335ea33d25927838d632b3ebdc6244177b08bf8747d44aa7656c3</cites><orcidid>0000-0003-4022-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.12926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.12926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30052272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Hung</creatorcontrib><creatorcontrib>Huang, Su‐Yun</creatorcontrib><title>Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Summary
Sufficient dimension reduction (SDR) continues to be an active field of research. When estimating the central subspace (CS), inverse regression based SDR methods involve solving a generalized eigenvalue problem, which can be problematic under the large‐p‐small‐n situation. In recent years, new techniques have emerged in numerical linear algebra, called randomized algorithms or random sketching, for high‐dimensional and large scale problems. To overcome the large‐p‐small‐n SDR problem, we combine the idea of statistical inference with random sketching to propose a new SDR method, called integrated random‐partition SDR (iRP‐SDR). Our method consists of the following three steps: (i) Randomly partition the covariates into subsets to construct an envelope subspace with low dimension. (ii) Obtain a sketch of the CS by applying a conventional SDR method within the constructed envelope subspace. (iii) Repeat the above two steps many times and integrate these multiple sketches to form the final estimate of the CS. After describing the details of these steps, the asymptotic properties of iRP‐SDR are established. Unlike existing methods, iRP‐SDR does not involve the determination of the structural dimension until the last stage, which makes it more adaptive to a high‐dimensional setting. The advantageous performance of iRP‐SDR is demonstrated via simulation studies and a practical example analyzing EEG data.</description><subject>Alcoholism - pathology</subject><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Brain - drug effects</subject><subject>Computer Simulation</subject><subject>Distance correlation screening</subject><subject>Eigenvalues</subject><subject>Electroencephalography - statistics & numerical data</subject><subject>Humans</subject><subject>Linear algebra</subject><subject>Machine Learning</subject><subject>Models, Theoretical</subject><subject>Partitions (mathematics)</subject><subject>Random sketching</subject><subject>Randomized algorithm</subject><subject>Random‐partition</subject><subject>Reduction</subject><subject>Regression analysis</subject><subject>Sketches</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Subspaces</subject><subject>Sufficient dimension reduction</subject><subject>Sure screening property</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1KxDAQx4Mo7rp68QGk4EWErvlomu5RFz8WVjyo4EEIaTrVLP1Yk1bZm4_gM_okpnb14MGBYTIzP_4Z_gjtEzwmPk5SU5djQic03kBDwiMS4ojiTTTEGMchi8jDAO04t_DthGO6jQYMY06poEP0eNvmudEGqibITAmVM3UVWMha3XSvV6MCq6qsLj_fP5bKNqYbuyCvbdA8Q1Ao-wTdyqcrVVH4WgVLW6cFlLtoK1eFg711HaH7i_O76VU4v7mcTU_noWYTFoegcaIxz7XAwBgHxVhG-YSKhCVZzGjKIM10TKOICJHiJM0TEYksipQSMY81G6GjXtf_-9KCa2RpnIaiUBXUrZMUi4QnnDPq0cM_6KJubeWvk5RSnDBBSEcd95S2tXMWcrm0plR2JQmWneey81x-e-7hg7Vkm5aQ_aI_JnuA9MCbKWD1j5Q8m91c96JfSmWPpw</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Hung, Hung</creator><creator>Huang, Su‐Yun</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4022-2081</orcidid></search><sort><creationdate>201903</creationdate><title>Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem</title><author>Hung, Hung ; Huang, Su‐Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3936-ec08c05fc70e335ea33d25927838d632b3ebdc6244177b08bf8747d44aa7656c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcoholism - pathology</topic><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Brain - drug effects</topic><topic>Computer Simulation</topic><topic>Distance correlation screening</topic><topic>Eigenvalues</topic><topic>Electroencephalography - statistics & numerical data</topic><topic>Humans</topic><topic>Linear algebra</topic><topic>Machine Learning</topic><topic>Models, Theoretical</topic><topic>Partitions (mathematics)</topic><topic>Random sketching</topic><topic>Randomized algorithm</topic><topic>Random‐partition</topic><topic>Reduction</topic><topic>Regression analysis</topic><topic>Sketches</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Subspaces</topic><topic>Sufficient dimension reduction</topic><topic>Sure screening property</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Hung</creatorcontrib><creatorcontrib>Huang, Su‐Yun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Hung</au><au>Huang, Su‐Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2019-03</date><risdate>2019</risdate><volume>75</volume><issue>1</issue><spage>245</spage><epage>255</epage><pages>245-255</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Summary
Sufficient dimension reduction (SDR) continues to be an active field of research. When estimating the central subspace (CS), inverse regression based SDR methods involve solving a generalized eigenvalue problem, which can be problematic under the large‐p‐small‐n situation. In recent years, new techniques have emerged in numerical linear algebra, called randomized algorithms or random sketching, for high‐dimensional and large scale problems. To overcome the large‐p‐small‐n SDR problem, we combine the idea of statistical inference with random sketching to propose a new SDR method, called integrated random‐partition SDR (iRP‐SDR). Our method consists of the following three steps: (i) Randomly partition the covariates into subsets to construct an envelope subspace with low dimension. (ii) Obtain a sketch of the CS by applying a conventional SDR method within the constructed envelope subspace. (iii) Repeat the above two steps many times and integrate these multiple sketches to form the final estimate of the CS. After describing the details of these steps, the asymptotic properties of iRP‐SDR are established. Unlike existing methods, iRP‐SDR does not involve the determination of the structural dimension until the last stage, which makes it more adaptive to a high‐dimensional setting. The advantageous performance of iRP‐SDR is demonstrated via simulation studies and a practical example analyzing EEG data.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>30052272</pmid><doi>10.1111/biom.12926</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4022-2081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2019-03, Vol.75 (1), p.245-255 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2078585532 |
source | MEDLINE; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current) |
subjects | Alcoholism - pathology Algorithms Asymptotic methods Asymptotic properties Brain - drug effects Computer Simulation Distance correlation screening Eigenvalues Electroencephalography - statistics & numerical data Humans Linear algebra Machine Learning Models, Theoretical Partitions (mathematics) Random sketching Randomized algorithm Random‐partition Reduction Regression analysis Sketches Statistical analysis Statistical inference Subspaces Sufficient dimension reduction Sure screening property |
title | Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20dimension%20reduction%20via%20random%E2%80%90partitions%20for%20the%20large%E2%80%90p%E2%80%90small%E2%80%90n%20problem&rft.jtitle=Biometrics&rft.au=Hung,%20Hung&rft.date=2019-03&rft.volume=75&rft.issue=1&rft.spage=245&rft.epage=255&rft.pages=245-255&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12926&rft_dat=%3Cproquest_cross%3E2220837112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220837112&rft_id=info:pmid/30052272&rfr_iscdi=true |