Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning

A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly­(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly­(vinylidenefluoride) cast support lay...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-08, Vol.10 (32), p.27477-27487
Hauptverfasser: Vanangamudi, Anbharasi, Saeki, Daisuke, Dumée, Ludovic F, Duke, Mikel, Vasiljevic, Todor, Matsuyama, Hideto, Yang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27487
container_issue 32
container_start_page 27477
container_title ACS applied materials & interfaces
container_volume 10
creator Vanangamudi, Anbharasi
Saeki, Daisuke
Dumée, Ludovic F
Duke, Mikel
Vasiljevic, Todor
Matsuyama, Hideto
Yang, Xing
description A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly­(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly­(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.
doi_str_mv 10.1021/acsami.8b07945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2078580564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078580564</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-143b8bce267bbc8ba0c012852bb82014ab5b10b771d1697136b68e49d7843c363</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhzHGSFqAakIRGGObOdSuUriYidD_z1GKd2Y7nT63tO9h9A1wXOCKbmX2svWzIXCWc7SEzQlOWOxoCk9Pe6MTdCF91uMeUJxeo4mCcZMpCKbIrkeXC01xItuYzoAB1X0aKyWvWz2vdFRYdud9aaH6BVa5WQHPqqtiz6gGnSA353twXTR0g6N6TaR7KpoDU0dFw3ILlwu0VktGw9XhzlDX8vFZ_Ecr96eXoqHVSyTnPcxYYkSSgPlmVJaKIk1JlSkVClBMWFSpYpglWWkIjzPSMIVF8DyKhMs0QlPZuh29N05-z2A78vWeA1NE162gy8pzkJknHIW0PmIame9d1CXO2da6fYlweVvreVYa3moNQhuDt6DaqE64n89BuBuBIKw3NrBdSHqf24_-2GCOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078580564</pqid></control><display><type>article</type><title>Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning</title><source>MEDLINE</source><source>ACS Publications</source><creator>Vanangamudi, Anbharasi ; Saeki, Daisuke ; Dumée, Ludovic F ; Duke, Mikel ; Vasiljevic, Todor ; Matsuyama, Hideto ; Yang, Xing</creator><creatorcontrib>Vanangamudi, Anbharasi ; Saeki, Daisuke ; Dumée, Ludovic F ; Duke, Mikel ; Vasiljevic, Todor ; Matsuyama, Hideto ; Yang, Xing</creatorcontrib><description>A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly­(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly­(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b07945</identifier><identifier>PMID: 30048587</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocatalysis ; Enzymes, Immobilized ; Hydrophobic and Hydrophilic Interactions ; Membranes, Artificial ; Permeability ; Ultrafiltration</subject><ispartof>ACS applied materials &amp; interfaces, 2018-08, Vol.10 (32), p.27477-27487</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-143b8bce267bbc8ba0c012852bb82014ab5b10b771d1697136b68e49d7843c363</citedby><cites>FETCH-LOGICAL-a396t-143b8bce267bbc8ba0c012852bb82014ab5b10b771d1697136b68e49d7843c363</cites><orcidid>0000-0002-2370-5041 ; 0000-0002-8403-8254 ; 0000-0001-6074-6355 ; 0000-0002-0264-4024 ; 0000-0003-2468-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b07945$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b07945$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30048587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanangamudi, Anbharasi</creatorcontrib><creatorcontrib>Saeki, Daisuke</creatorcontrib><creatorcontrib>Dumée, Ludovic F</creatorcontrib><creatorcontrib>Duke, Mikel</creatorcontrib><creatorcontrib>Vasiljevic, Todor</creatorcontrib><creatorcontrib>Matsuyama, Hideto</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><title>Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly­(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly­(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.</description><subject>Biocatalysis</subject><subject>Enzymes, Immobilized</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Membranes, Artificial</subject><subject>Permeability</subject><subject>Ultrafiltration</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdhzHGSFqAakIRGGObOdSuUriYidD_z1GKd2Y7nT63tO9h9A1wXOCKbmX2svWzIXCWc7SEzQlOWOxoCk9Pe6MTdCF91uMeUJxeo4mCcZMpCKbIrkeXC01xItuYzoAB1X0aKyWvWz2vdFRYdud9aaH6BVa5WQHPqqtiz6gGnSA353twXTR0g6N6TaR7KpoDU0dFw3ILlwu0VktGw9XhzlDX8vFZ_Ecr96eXoqHVSyTnPcxYYkSSgPlmVJaKIk1JlSkVClBMWFSpYpglWWkIjzPSMIVF8DyKhMs0QlPZuh29N05-z2A78vWeA1NE162gy8pzkJknHIW0PmIame9d1CXO2da6fYlweVvreVYa3moNQhuDt6DaqE64n89BuBuBIKw3NrBdSHqf24_-2GCOA</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Vanangamudi, Anbharasi</creator><creator>Saeki, Daisuke</creator><creator>Dumée, Ludovic F</creator><creator>Duke, Mikel</creator><creator>Vasiljevic, Todor</creator><creator>Matsuyama, Hideto</creator><creator>Yang, Xing</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2370-5041</orcidid><orcidid>https://orcid.org/0000-0002-8403-8254</orcidid><orcidid>https://orcid.org/0000-0001-6074-6355</orcidid><orcidid>https://orcid.org/0000-0002-0264-4024</orcidid><orcidid>https://orcid.org/0000-0003-2468-4905</orcidid></search><sort><creationdate>20180815</creationdate><title>Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning</title><author>Vanangamudi, Anbharasi ; Saeki, Daisuke ; Dumée, Ludovic F ; Duke, Mikel ; Vasiljevic, Todor ; Matsuyama, Hideto ; Yang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-143b8bce267bbc8ba0c012852bb82014ab5b10b771d1697136b68e49d7843c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocatalysis</topic><topic>Enzymes, Immobilized</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Membranes, Artificial</topic><topic>Permeability</topic><topic>Ultrafiltration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanangamudi, Anbharasi</creatorcontrib><creatorcontrib>Saeki, Daisuke</creatorcontrib><creatorcontrib>Dumée, Ludovic F</creatorcontrib><creatorcontrib>Duke, Mikel</creatorcontrib><creatorcontrib>Vasiljevic, Todor</creatorcontrib><creatorcontrib>Matsuyama, Hideto</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanangamudi, Anbharasi</au><au>Saeki, Daisuke</au><au>Dumée, Ludovic F</au><au>Duke, Mikel</au><au>Vasiljevic, Todor</au><au>Matsuyama, Hideto</au><au>Yang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>10</volume><issue>32</issue><spage>27477</spage><epage>27487</epage><pages>27477-27487</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly­(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly­(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30048587</pmid><doi>10.1021/acsami.8b07945</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2370-5041</orcidid><orcidid>https://orcid.org/0000-0002-8403-8254</orcidid><orcidid>https://orcid.org/0000-0001-6074-6355</orcidid><orcidid>https://orcid.org/0000-0002-0264-4024</orcidid><orcidid>https://orcid.org/0000-0003-2468-4905</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-08, Vol.10 (32), p.27477-27487
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2078580564
source MEDLINE; ACS Publications
subjects Biocatalysis
Enzymes, Immobilized
Hydrophobic and Hydrophilic Interactions
Membranes, Artificial
Permeability
Ultrafiltration
title Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Engineered%20Biocatalytic%20Composite%20Membranes%20for%20Reduced%20Protein%20Fouling%20and%20Self-Cleaning&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Vanangamudi,%20Anbharasi&rft.date=2018-08-15&rft.volume=10&rft.issue=32&rft.spage=27477&rft.epage=27487&rft.pages=27477-27487&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b07945&rft_dat=%3Cproquest_cross%3E2078580564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078580564&rft_id=info:pmid/30048587&rfr_iscdi=true