Mechanistic role of movement and strain sensitivity in muscle contraction

Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (15), p.6140-6145
Hauptverfasser: Davis, Julien S, Epstein, Neal D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6145
container_issue 15
container_start_page 6140
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Davis, Julien S
Epstein, Neal D
description Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca²⁺-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done.
doi_str_mv 10.1073/pnas.0812487106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20772150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40482057</jstor_id><sourcerecordid>40482057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-a5727dc02075915f6eabcfb14c721d4a9fb9c73dd9f605d6bdb0ec91326525ca3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIOCAuaWec2F5fkFDFR6UiDtCz5ThO61ViL7azov89jnbVBQ5wsqz5zZs38wh5jnCGIJrzrdfpDNZI27VA4A_ICkFizVsJD8kKgIp63dL2hDxJaQMAkq3hMTlB2VCGtFmRyy_W3GrvUnamimG0VRiqKezsZH2utO-rlKN2vkrWJ5fdzuW7qnynOZkCm-BL2WQX_FPyaNBjss8O7ym5_vjh-8Xn-urrp8uL91e1YYzmWjNBRW-AgmAS2cCt7szQYWsExb7VcuikEU3fy4ED63nXd2CNxIZyRpnRzSl5t9fdzt1ke2MXB6PaRjfpeKeCdurPine36ibsFOUcG2yLwJuDQAw_Zpuymlwydhy1t2FOiosyDDn_L1hWKJ4ZFPD1X-AmzNGXKxQGW2gpXdTO95CJIaVoh3vLCGoJUy1hqmOYpePl75se-UN6BXh1AJbOoxxXyBQvgwvx9t-EGuZxzPZnLuiLPbpJOcR7trhfU2DiOGzQQemb6JK6_lbWawA5SsFo8wt6iMbH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201404226</pqid></control><display><type>article</type><title>Mechanistic role of movement and strain sensitivity in muscle contraction</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Davis, Julien S ; Epstein, Neal D</creator><creatorcontrib>Davis, Julien S ; Epstein, Neal D</creatorcontrib><description>Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca²⁺-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0812487106</identifier><identifier>PMID: 19325123</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Animals ; Biochemistry ; Biological Sciences ; Calcium ; Catalysis ; Enthalpy ; Isomerization ; Kinetics ; Movement - physiology ; Muscle contraction ; Muscle Contraction - physiology ; Muscle fibers ; Muscle Fibers, Slow-Twitch - physiology ; Muscular system ; Phosphates ; Proteins ; Rabbits ; Reaction kinetics ; Sensitivity and Specificity ; Sprains and strains ; Stiffness ; Stress, Mechanical ; Temperature ; Temperature dependence ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6140-6145</ispartof><rights>Copyright National Academy of Sciences Apr 14, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-a5727dc02075915f6eabcfb14c721d4a9fb9c73dd9f605d6bdb0ec91326525ca3</citedby><cites>FETCH-LOGICAL-c552t-a5727dc02075915f6eabcfb14c721d4a9fb9c73dd9f605d6bdb0ec91326525ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40482057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40482057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19325123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Julien S</creatorcontrib><creatorcontrib>Epstein, Neal D</creatorcontrib><title>Mechanistic role of movement and strain sensitivity in muscle contraction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca²⁺-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done.</description><subject>Actins</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Catalysis</subject><subject>Enthalpy</subject><subject>Isomerization</subject><subject>Kinetics</subject><subject>Movement - physiology</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle fibers</subject><subject>Muscle Fibers, Slow-Twitch - physiology</subject><subject>Muscular system</subject><subject>Phosphates</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Reaction kinetics</subject><subject>Sensitivity and Specificity</subject><subject>Sprains and strains</subject><subject>Stiffness</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIOCAuaWec2F5fkFDFR6UiDtCz5ThO61ViL7azov89jnbVBQ5wsqz5zZs38wh5jnCGIJrzrdfpDNZI27VA4A_ICkFizVsJD8kKgIp63dL2hDxJaQMAkq3hMTlB2VCGtFmRyy_W3GrvUnamimG0VRiqKezsZH2utO-rlKN2vkrWJ5fdzuW7qnynOZkCm-BL2WQX_FPyaNBjss8O7ym5_vjh-8Xn-urrp8uL91e1YYzmWjNBRW-AgmAS2cCt7szQYWsExb7VcuikEU3fy4ED63nXd2CNxIZyRpnRzSl5t9fdzt1ke2MXB6PaRjfpeKeCdurPine36ibsFOUcG2yLwJuDQAw_Zpuymlwydhy1t2FOiosyDDn_L1hWKJ4ZFPD1X-AmzNGXKxQGW2gpXdTO95CJIaVoh3vLCGoJUy1hqmOYpePl75se-UN6BXh1AJbOoxxXyBQvgwvx9t-EGuZxzPZnLuiLPbpJOcR7trhfU2DiOGzQQemb6JK6_lbWawA5SsFo8wt6iMbH</recordid><startdate>20090414</startdate><enddate>20090414</enddate><creator>Davis, Julien S</creator><creator>Epstein, Neal D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090414</creationdate><title>Mechanistic role of movement and strain sensitivity in muscle contraction</title><author>Davis, Julien S ; Epstein, Neal D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-a5727dc02075915f6eabcfb14c721d4a9fb9c73dd9f605d6bdb0ec91326525ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Catalysis</topic><topic>Enthalpy</topic><topic>Isomerization</topic><topic>Kinetics</topic><topic>Movement - physiology</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle fibers</topic><topic>Muscle Fibers, Slow-Twitch - physiology</topic><topic>Muscular system</topic><topic>Phosphates</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Reaction kinetics</topic><topic>Sensitivity and Specificity</topic><topic>Sprains and strains</topic><topic>Stiffness</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Julien S</creatorcontrib><creatorcontrib>Epstein, Neal D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Julien S</au><au>Epstein, Neal D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic role of movement and strain sensitivity in muscle contraction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-14</date><risdate>2009</risdate><volume>106</volume><issue>15</issue><spage>6140</spage><epage>6145</epage><pages>6140-6145</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca²⁺-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19325123</pmid><doi>10.1073/pnas.0812487106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (15), p.6140-6145
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_20772150
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actins
Animals
Biochemistry
Biological Sciences
Calcium
Catalysis
Enthalpy
Isomerization
Kinetics
Movement - physiology
Muscle contraction
Muscle Contraction - physiology
Muscle fibers
Muscle Fibers, Slow-Twitch - physiology
Muscular system
Phosphates
Proteins
Rabbits
Reaction kinetics
Sensitivity and Specificity
Sprains and strains
Stiffness
Stress, Mechanical
Temperature
Temperature dependence
Thermodynamics
title Mechanistic role of movement and strain sensitivity in muscle contraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20role%20of%20movement%20and%20strain%20sensitivity%20in%20muscle%20contraction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Davis,%20Julien%20S&rft.date=2009-04-14&rft.volume=106&rft.issue=15&rft.spage=6140&rft.epage=6145&rft.pages=6140-6145&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0812487106&rft_dat=%3Cjstor_proqu%3E40482057%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201404226&rft_id=info:pmid/19325123&rft_jstor_id=40482057&rfr_iscdi=true