The investigation of synovial genomic targets of bucillamine with microarray technique
Objective To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1β-stimulated human fibroblast-like synovial cells (FLS). Methods Normal human FLS were treated with IL-1β in the presence or absence of 10 and 100 μM...
Gespeichert in:
Veröffentlicht in: | Inflammation research 2009-09, Vol.58 (9), p.571-584 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 9 |
container_start_page | 571 |
container_title | Inflammation research |
container_volume | 58 |
creator | Oki, Kenji Tsuji, Fumio Ohashi, Koji Kageyama, Masaaki Aono, Hiroyuki Sasano, Minoru |
description | Objective
To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1β-stimulated human fibroblast-like synovial cells (FLS).
Methods
Normal human FLS were treated with IL-1β in the presence or absence of 10 and 100 μM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis.
Results
Numerous pathways were activated by IL-1β stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1β.
Conclusions
Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1β in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology. |
doi_str_mv | 10.1007/s00011-009-0021-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20771164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20771164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4c44cfa291f5984ba1a7563da71231489b2fa3353caa035775e6cade677982653</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoflR_gBdZPHhbnUmym81RxC8oeKniLaRptk3pZmuyW9l_b0oLguBhyMD7zDuTl5BLhFsEEHcRABBzAJmKYj4ckFPkFHIJ1edh6oGynFUMTshZjMtEV7Six-QEJZXAhTwlH5OFzZzf2Ni5ue5c67O2zuLg243Tq2xufds4k3U6zG0Xt9q0N2610o3zNvt23SJLemh1CHrIOmsW3n319pwc1XoV7cX-HZH3p8fJw0s-fnt-fbgf54YDdjk3nJtaU4l1ISs-1ahFUbKZFkgZ8kpOaa0ZK5jRGlghRGFLo2e2FEJWtCzYiNzsfNehTWtjpxoXjU33edv2UVEQArHkCbz-Ay7bPvh0m6JYUp7MIUG4g9KHYgy2VuvgGh0GhaC2iatd4iolrraJqyHNXO2N-2ljZ78T-4gTQHdATJKf2_C7-X_XH0chjCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216243570</pqid></control><display><type>article</type><title>The investigation of synovial genomic targets of bucillamine with microarray technique</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Oki, Kenji ; Tsuji, Fumio ; Ohashi, Koji ; Kageyama, Masaaki ; Aono, Hiroyuki ; Sasano, Minoru</creator><creatorcontrib>Oki, Kenji ; Tsuji, Fumio ; Ohashi, Koji ; Kageyama, Masaaki ; Aono, Hiroyuki ; Sasano, Minoru</creatorcontrib><description>Objective
To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1β-stimulated human fibroblast-like synovial cells (FLS).
Methods
Normal human FLS were treated with IL-1β in the presence or absence of 10 and 100 μM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis.
Results
Numerous pathways were activated by IL-1β stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1β.
Conclusions
Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1β in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.</description><identifier>ISSN: 1023-3830</identifier><identifier>EISSN: 1420-908X</identifier><identifier>DOI: 10.1007/s00011-009-0021-y</identifier><identifier>PMID: 19290479</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Allergology ; Anti-Inflammatory Agents, Non-Steroidal - chemistry ; Anti-Inflammatory Agents, Non-Steroidal - pharmacology ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; Arthritis, Rheumatoid - drug therapy ; Arthritis, Rheumatoid - metabolism ; Arthritis, Rheumatoid - pathology ; Biomedical and Life Sciences ; Biomedicine ; Cells, Cultured ; Cysteine - analogs & derivatives ; Cysteine - chemistry ; Cysteine - pharmacology ; Cysteine - therapeutic use ; Dermatology ; Gene Expression Profiling ; Gene Expression Regulation - drug effects ; Humans ; Immunology ; Interleukin-1beta - pharmacology ; Microarray Analysis - methods ; Molecular Sequence Data ; Molecular Structure ; Neurology ; Original Research Paper ; Pharmacology/Toxicology ; Rheumatology ; Signal Transduction - drug effects ; Synovial Membrane - cytology ; Synovial Membrane - drug effects ; Synovial Membrane - physiology</subject><ispartof>Inflammation research, 2009-09, Vol.58 (9), p.571-584</ispartof><rights>Birkhäuser Verlag, Basel/Switzerland 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4c44cfa291f5984ba1a7563da71231489b2fa3353caa035775e6cade677982653</citedby><cites>FETCH-LOGICAL-c401t-4c44cfa291f5984ba1a7563da71231489b2fa3353caa035775e6cade677982653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00011-009-0021-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00011-009-0021-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19290479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oki, Kenji</creatorcontrib><creatorcontrib>Tsuji, Fumio</creatorcontrib><creatorcontrib>Ohashi, Koji</creatorcontrib><creatorcontrib>Kageyama, Masaaki</creatorcontrib><creatorcontrib>Aono, Hiroyuki</creatorcontrib><creatorcontrib>Sasano, Minoru</creatorcontrib><title>The investigation of synovial genomic targets of bucillamine with microarray technique</title><title>Inflammation research</title><addtitle>Inflamm. Res</addtitle><addtitle>Inflamm Res</addtitle><description>Objective
To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1β-stimulated human fibroblast-like synovial cells (FLS).
Methods
Normal human FLS were treated with IL-1β in the presence or absence of 10 and 100 μM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis.
Results
Numerous pathways were activated by IL-1β stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1β.
Conclusions
Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1β in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.</description><subject>Allergology</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - chemistry</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>Arthritis, Rheumatoid - drug therapy</subject><subject>Arthritis, Rheumatoid - metabolism</subject><subject>Arthritis, Rheumatoid - pathology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cells, Cultured</subject><subject>Cysteine - analogs & derivatives</subject><subject>Cysteine - chemistry</subject><subject>Cysteine - pharmacology</subject><subject>Cysteine - therapeutic use</subject><subject>Dermatology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Humans</subject><subject>Immunology</subject><subject>Interleukin-1beta - pharmacology</subject><subject>Microarray Analysis - methods</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Neurology</subject><subject>Original Research Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Rheumatology</subject><subject>Signal Transduction - drug effects</subject><subject>Synovial Membrane - cytology</subject><subject>Synovial Membrane - drug effects</subject><subject>Synovial Membrane - physiology</subject><issn>1023-3830</issn><issn>1420-908X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kE1LAzEQhoMoflR_gBdZPHhbnUmym81RxC8oeKniLaRptk3pZmuyW9l_b0oLguBhyMD7zDuTl5BLhFsEEHcRABBzAJmKYj4ckFPkFHIJ1edh6oGynFUMTshZjMtEV7Six-QEJZXAhTwlH5OFzZzf2Ni5ue5c67O2zuLg243Tq2xufds4k3U6zG0Xt9q0N2610o3zNvt23SJLemh1CHrIOmsW3n319pwc1XoV7cX-HZH3p8fJw0s-fnt-fbgf54YDdjk3nJtaU4l1ISs-1ahFUbKZFkgZ8kpOaa0ZK5jRGlghRGFLo2e2FEJWtCzYiNzsfNehTWtjpxoXjU33edv2UVEQArHkCbz-Ay7bPvh0m6JYUp7MIUG4g9KHYgy2VuvgGh0GhaC2iatd4iolrraJqyHNXO2N-2ljZ78T-4gTQHdATJKf2_C7-X_XH0chjCU</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Oki, Kenji</creator><creator>Tsuji, Fumio</creator><creator>Ohashi, Koji</creator><creator>Kageyama, Masaaki</creator><creator>Aono, Hiroyuki</creator><creator>Sasano, Minoru</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>RC3</scope></search><sort><creationdate>20090901</creationdate><title>The investigation of synovial genomic targets of bucillamine with microarray technique</title><author>Oki, Kenji ; Tsuji, Fumio ; Ohashi, Koji ; Kageyama, Masaaki ; Aono, Hiroyuki ; Sasano, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4c44cfa291f5984ba1a7563da71231489b2fa3353caa035775e6cade677982653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Allergology</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - chemistry</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - pharmacology</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>Arthritis, Rheumatoid - drug therapy</topic><topic>Arthritis, Rheumatoid - metabolism</topic><topic>Arthritis, Rheumatoid - pathology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cells, Cultured</topic><topic>Cysteine - analogs & derivatives</topic><topic>Cysteine - chemistry</topic><topic>Cysteine - pharmacology</topic><topic>Cysteine - therapeutic use</topic><topic>Dermatology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Humans</topic><topic>Immunology</topic><topic>Interleukin-1beta - pharmacology</topic><topic>Microarray Analysis - methods</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Neurology</topic><topic>Original Research Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Rheumatology</topic><topic>Signal Transduction - drug effects</topic><topic>Synovial Membrane - cytology</topic><topic>Synovial Membrane - drug effects</topic><topic>Synovial Membrane - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oki, Kenji</creatorcontrib><creatorcontrib>Tsuji, Fumio</creatorcontrib><creatorcontrib>Ohashi, Koji</creatorcontrib><creatorcontrib>Kageyama, Masaaki</creatorcontrib><creatorcontrib>Aono, Hiroyuki</creatorcontrib><creatorcontrib>Sasano, Minoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Inflammation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oki, Kenji</au><au>Tsuji, Fumio</au><au>Ohashi, Koji</au><au>Kageyama, Masaaki</au><au>Aono, Hiroyuki</au><au>Sasano, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The investigation of synovial genomic targets of bucillamine with microarray technique</atitle><jtitle>Inflammation research</jtitle><stitle>Inflamm. Res</stitle><addtitle>Inflamm Res</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>571</spage><epage>584</epage><pages>571-584</pages><issn>1023-3830</issn><eissn>1420-908X</eissn><abstract>Objective
To identify the molecular mechanisms of bucillamine activity, global gene expression analysis and pathway analysis were conducted using IL-1β-stimulated human fibroblast-like synovial cells (FLS).
Methods
Normal human FLS were treated with IL-1β in the presence or absence of 10 and 100 μM bucillamine for 6 h. Total RNA was extracted and global gene expression levels were detected using a 44 k human whole genome array. Data were analyzed using Ingenuity pathway analysis.
Results
Numerous pathways were activated by IL-1β stimulation. At both concentrations, bucillamine suppressed nine signal pathways stimulated by IL-1β.
Conclusions
Bucillamine effectively inhibited fibroblast growth factor (FGF) signaling and tight junction signaling activated by IL-1β in FLS. Suppression of these signal pathways may correlate with the pharmacologic mechanisms of bucillamine. In particular, the suppression of FGF signaling by bucillamine is remarkable because the activation of FGF signaling may be involved in rheumatoid arthritis pathology.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><pmid>19290479</pmid><doi>10.1007/s00011-009-0021-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-3830 |
ispartof | Inflammation research, 2009-09, Vol.58 (9), p.571-584 |
issn | 1023-3830 1420-908X |
language | eng |
recordid | cdi_proquest_miscellaneous_20771164 |
source | MEDLINE; SpringerNature Journals |
subjects | Allergology Anti-Inflammatory Agents, Non-Steroidal - chemistry Anti-Inflammatory Agents, Non-Steroidal - pharmacology Anti-Inflammatory Agents, Non-Steroidal - therapeutic use Arthritis, Rheumatoid - drug therapy Arthritis, Rheumatoid - metabolism Arthritis, Rheumatoid - pathology Biomedical and Life Sciences Biomedicine Cells, Cultured Cysteine - analogs & derivatives Cysteine - chemistry Cysteine - pharmacology Cysteine - therapeutic use Dermatology Gene Expression Profiling Gene Expression Regulation - drug effects Humans Immunology Interleukin-1beta - pharmacology Microarray Analysis - methods Molecular Sequence Data Molecular Structure Neurology Original Research Paper Pharmacology/Toxicology Rheumatology Signal Transduction - drug effects Synovial Membrane - cytology Synovial Membrane - drug effects Synovial Membrane - physiology |
title | The investigation of synovial genomic targets of bucillamine with microarray technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20investigation%20of%20synovial%20genomic%20targets%20of%20bucillamine%20with%20microarray%20technique&rft.jtitle=Inflammation%20research&rft.au=Oki,%20Kenji&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=571&rft.epage=584&rft.pages=571-584&rft.issn=1023-3830&rft.eissn=1420-908X&rft_id=info:doi/10.1007/s00011-009-0021-y&rft_dat=%3Cproquest_cross%3E20771164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216243570&rft_id=info:pmid/19290479&rfr_iscdi=true |