3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy
Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard...
Gespeichert in:
Veröffentlicht in: | Chemical research in toxicology 2008-03, Vol.21 (3), p.619-632 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 3 |
container_start_page | 619 |
container_title | Chemical research in toxicology |
container_volume | 21 |
creator | Cruz-Monteagudo, Maykel González-Díaz, Humberto Borges, Fernanda Dominguez, Elena Rosa Cordeiro, M. Natália D.S |
description | Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data. |
doi_str_mv | 10.1021/tx700296t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20768641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20768641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</originalsourceid><addsrcrecordid>eNpt0T9vEzEYBnALUdFQGPgCyAuoHS7YPju-Y4vSAJVa6J8gsZ1sx0dc-eyr7UPN1pGZmX6Ofp98EgyJYGHyK_nn55X1APACozFGBL9JtxwhUk_SIzDCjKCCIYwegxGq6rIgpPqyD57GeI0Qzpw_Afu4IowzxkfgoTwuzubHH-fxLZw6OLVJByeS-abh5u6ncfDKWKP85u4eLrRaOXMzaNj6AGcr3RklLLzUUYugVjDjhb_N2Pqv6zEkY3gxCJdM2sadB5-07_Tm-48_zKR1fmvzpXdxZfoIDy_OF5dHUIqol9A7eCZihFe9VikMXR5MyOvmLgXfr5-BvVbYqJ_vzgPw-d18MftQnH56fzKbnhaipDQVtSJcISZ1LRGXktSMUiw1papsVVUvGaGMt6gWqlWiahmVE65aWS1RhWus2vIAvN7m9sHnr8fUdCYqba1w2g-xIYhPqgnFGR5toQo-xqDbpg-mE2HdYNT8bqn521K2L3ehg-z08p_c1ZLBqy0QKjbXfsiV2PifoF9ukp5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20768641</pqid></control><display><type>article</type><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</creator><creatorcontrib>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</creatorcontrib><description>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx700296t</identifier><identifier>PMID: 18257557</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Simulation ; Entropy ; Gene Library ; Markov Chains ; Mass Spectrometry ; Models, Statistical ; Proteome - drug effects ; Quantitative Structure-Activity Relationship ; Toxicology - methods</subject><ispartof>Chemical research in toxicology, 2008-03, Vol.21 (3), p.619-632</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</citedby><cites>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx700296t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx700296t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18257557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz-Monteagudo, Maykel</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Borges, Fernanda</creatorcontrib><creatorcontrib>Dominguez, Elena Rosa</creatorcontrib><creatorcontrib>Cordeiro, M. Natália D.S</creatorcontrib><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Gene Library</subject><subject>Markov Chains</subject><subject>Mass Spectrometry</subject><subject>Models, Statistical</subject><subject>Proteome - drug effects</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Toxicology - methods</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0T9vEzEYBnALUdFQGPgCyAuoHS7YPju-Y4vSAJVa6J8gsZ1sx0dc-eyr7UPN1pGZmX6Ofp98EgyJYGHyK_nn55X1APACozFGBL9JtxwhUk_SIzDCjKCCIYwegxGq6rIgpPqyD57GeI0Qzpw_Afu4IowzxkfgoTwuzubHH-fxLZw6OLVJByeS-abh5u6ncfDKWKP85u4eLrRaOXMzaNj6AGcr3RklLLzUUYugVjDjhb_N2Pqv6zEkY3gxCJdM2sadB5-07_Tm-48_zKR1fmvzpXdxZfoIDy_OF5dHUIqol9A7eCZihFe9VikMXR5MyOvmLgXfr5-BvVbYqJ_vzgPw-d18MftQnH56fzKbnhaipDQVtSJcISZ1LRGXktSMUiw1papsVVUvGaGMt6gWqlWiahmVE65aWS1RhWus2vIAvN7m9sHnr8fUdCYqba1w2g-xIYhPqgnFGR5toQo-xqDbpg-mE2HdYNT8bqn521K2L3ehg-z08p_c1ZLBqy0QKjbXfsiV2PifoF9ukp5d</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Cruz-Monteagudo, Maykel</creator><creator>González-Díaz, Humberto</creator><creator>Borges, Fernanda</creator><creator>Dominguez, Elena Rosa</creator><creator>Cordeiro, M. Natália D.S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20080301</creationdate><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><author>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Gene Library</topic><topic>Markov Chains</topic><topic>Mass Spectrometry</topic><topic>Models, Statistical</topic><topic>Proteome - drug effects</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Toxicology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Monteagudo, Maykel</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Borges, Fernanda</creatorcontrib><creatorcontrib>Dominguez, Elena Rosa</creatorcontrib><creatorcontrib>Cordeiro, M. Natália D.S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Monteagudo, Maykel</au><au>González-Díaz, Humberto</au><au>Borges, Fernanda</au><au>Dominguez, Elena Rosa</au><au>Cordeiro, M. Natália D.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>21</volume><issue>3</issue><spage>619</spage><epage>632</epage><pages>619-632</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18257557</pmid><doi>10.1021/tx700296t</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-228X |
ispartof | Chemical research in toxicology, 2008-03, Vol.21 (3), p.619-632 |
issn | 0893-228X 1520-5010 |
language | eng |
recordid | cdi_proquest_miscellaneous_20768641 |
source | MEDLINE; American Chemical Society Journals |
subjects | Algorithms Artificial Intelligence Computer Simulation Entropy Gene Library Markov Chains Mass Spectrometry Models, Statistical Proteome - drug effects Quantitative Structure-Activity Relationship Toxicology - methods |
title | 3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-MEDNEs:%20An%20Alternative%20%E2%80%9Cin%20Silico%E2%80%9D%20Technique%20for%20Chemical%20Research%20in%20Toxicology.%202.%20Quantitative%20Proteome%E2%88%92Toxicity%20Relationships%20(QPTR)%20based%20on%20Mass%20Spectrum%20Spiral%20Entropy&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=Cruz-Monteagudo,%20Maykel&rft.date=2008-03-01&rft.volume=21&rft.issue=3&rft.spage=619&rft.epage=632&rft.pages=619-632&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx700296t&rft_dat=%3Cproquest_cross%3E20768641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20768641&rft_id=info:pmid/18257557&rfr_iscdi=true |