3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy

Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in toxicology 2008-03, Vol.21 (3), p.619-632
Hauptverfasser: Cruz-Monteagudo, Maykel, González-Díaz, Humberto, Borges, Fernanda, Dominguez, Elena Rosa, Cordeiro, M. Natália D.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 3
container_start_page 619
container_title Chemical research in toxicology
container_volume 21
creator Cruz-Monteagudo, Maykel
González-Díaz, Humberto
Borges, Fernanda
Dominguez, Elena Rosa
Cordeiro, M. Natália D.S
description Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.
doi_str_mv 10.1021/tx700296t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20768641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20768641</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</originalsourceid><addsrcrecordid>eNpt0T9vEzEYBnALUdFQGPgCyAuoHS7YPju-Y4vSAJVa6J8gsZ1sx0dc-eyr7UPN1pGZmX6Ofp98EgyJYGHyK_nn55X1APACozFGBL9JtxwhUk_SIzDCjKCCIYwegxGq6rIgpPqyD57GeI0Qzpw_Afu4IowzxkfgoTwuzubHH-fxLZw6OLVJByeS-abh5u6ncfDKWKP85u4eLrRaOXMzaNj6AGcr3RklLLzUUYugVjDjhb_N2Pqv6zEkY3gxCJdM2sadB5-07_Tm-48_zKR1fmvzpXdxZfoIDy_OF5dHUIqol9A7eCZihFe9VikMXR5MyOvmLgXfr5-BvVbYqJ_vzgPw-d18MftQnH56fzKbnhaipDQVtSJcISZ1LRGXktSMUiw1papsVVUvGaGMt6gWqlWiahmVE65aWS1RhWus2vIAvN7m9sHnr8fUdCYqba1w2g-xIYhPqgnFGR5toQo-xqDbpg-mE2HdYNT8bqn521K2L3ehg-z08p_c1ZLBqy0QKjbXfsiV2PifoF9ukp5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20768641</pqid></control><display><type>article</type><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</creator><creatorcontrib>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</creatorcontrib><description>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</description><identifier>ISSN: 0893-228X</identifier><identifier>EISSN: 1520-5010</identifier><identifier>DOI: 10.1021/tx700296t</identifier><identifier>PMID: 18257557</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Simulation ; Entropy ; Gene Library ; Markov Chains ; Mass Spectrometry ; Models, Statistical ; Proteome - drug effects ; Quantitative Structure-Activity Relationship ; Toxicology - methods</subject><ispartof>Chemical research in toxicology, 2008-03, Vol.21 (3), p.619-632</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</citedby><cites>FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/tx700296t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/tx700296t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18257557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz-Monteagudo, Maykel</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Borges, Fernanda</creatorcontrib><creatorcontrib>Dominguez, Elena Rosa</creatorcontrib><creatorcontrib>Cordeiro, M. Natália D.S</creatorcontrib><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><title>Chemical research in toxicology</title><addtitle>Chem. Res. Toxicol</addtitle><description>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Gene Library</subject><subject>Markov Chains</subject><subject>Mass Spectrometry</subject><subject>Models, Statistical</subject><subject>Proteome - drug effects</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Toxicology - methods</subject><issn>0893-228X</issn><issn>1520-5010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0T9vEzEYBnALUdFQGPgCyAuoHS7YPju-Y4vSAJVa6J8gsZ1sx0dc-eyr7UPN1pGZmX6Ofp98EgyJYGHyK_nn55X1APACozFGBL9JtxwhUk_SIzDCjKCCIYwegxGq6rIgpPqyD57GeI0Qzpw_Afu4IowzxkfgoTwuzubHH-fxLZw6OLVJByeS-abh5u6ncfDKWKP85u4eLrRaOXMzaNj6AGcr3RklLLzUUYugVjDjhb_N2Pqv6zEkY3gxCJdM2sadB5-07_Tm-48_zKR1fmvzpXdxZfoIDy_OF5dHUIqol9A7eCZihFe9VikMXR5MyOvmLgXfr5-BvVbYqJ_vzgPw-d18MftQnH56fzKbnhaipDQVtSJcISZ1LRGXktSMUiw1papsVVUvGaGMt6gWqlWiahmVE65aWS1RhWus2vIAvN7m9sHnr8fUdCYqba1w2g-xIYhPqgnFGR5toQo-xqDbpg-mE2HdYNT8bqn521K2L3ehg-z08p_c1ZLBqy0QKjbXfsiV2PifoF9ukp5d</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Cruz-Monteagudo, Maykel</creator><creator>González-Díaz, Humberto</creator><creator>Borges, Fernanda</creator><creator>Dominguez, Elena Rosa</creator><creator>Cordeiro, M. Natália D.S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20080301</creationdate><title>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</title><author>Cruz-Monteagudo, Maykel ; González-Díaz, Humberto ; Borges, Fernanda ; Dominguez, Elena Rosa ; Cordeiro, M. Natália D.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-9c27c05be9b07bb295441be44c3fc89d52457f09acfca8f54b67cfb8d08191cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Gene Library</topic><topic>Markov Chains</topic><topic>Mass Spectrometry</topic><topic>Models, Statistical</topic><topic>Proteome - drug effects</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Toxicology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Monteagudo, Maykel</creatorcontrib><creatorcontrib>González-Díaz, Humberto</creatorcontrib><creatorcontrib>Borges, Fernanda</creatorcontrib><creatorcontrib>Dominguez, Elena Rosa</creatorcontrib><creatorcontrib>Cordeiro, M. Natália D.S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Chemical research in toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Monteagudo, Maykel</au><au>González-Díaz, Humberto</au><au>Borges, Fernanda</au><au>Dominguez, Elena Rosa</au><au>Cordeiro, M. Natália D.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy</atitle><jtitle>Chemical research in toxicology</jtitle><addtitle>Chem. Res. Toxicol</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>21</volume><issue>3</issue><spage>619</spage><epage>632</epage><pages>619-632</pages><issn>0893-228X</issn><eissn>1520-5010</eissn><abstract>Low range mass spectra (MS) characterization of serum proteome offers the best chance of discovering proteome−(early drug-induced cardiac toxicity) relationships, called here Pro-EDICToRs. However, due to the thousands of proteins involved, finding the single disease-related protein could be a hard task. The search for a model based on general MS patterns becomes a more realistic choice. In our previous work ( González-Díaz H. , et al. Chem. Res. Toxicol. 2003, 16, 1318–1327 ), we introduced the molecular structure information indices called 3D-Markovian electronic delocalization entropies (3D-MEDNEs). In this previous work, quantitative structure−toxicity relationship (QSTR) techniques allowed us to link 3D-MEDNEs with blood toxicological properties of drugs. In this second part, we extend 3D-MEDNEs to numerically encode biologically relevant information present in MS of the serum proteome for the first time. Using the same idea behind QSTR techniques, we can seek now by analogy a quantitative proteome−toxicity relationship (QPTR). The new QPTR models link MS 3D-MEDNEs with drug-induced toxicological properties from blood proteome information. We first generalized Randic’s spiral graph and lattice networks of protein sequences to represent the MS of 62 serum proteome samples with more than 370 100 intensity (Ii ) signals with m/z bandwidth above 700–12000 each. Next, we calculated the 3D-MEDNEs for each MS using the software MARCH-INSIDE. After that, we developed several QPTR models using different machine learning and MS representation algorithms to classify samples as control or positive Pro-EDICToRs samples. The best QPTR proposed showed accuracy values ranging from 83.8% to 87.1% and leave-one-out (LOO) predictive ability of 77.4–85.5%. This work demonstrated that the idea behind classic drug QSTR models may be extended to construct QPTRs with proteome MS data.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18257557</pmid><doi>10.1021/tx700296t</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-228X
ispartof Chemical research in toxicology, 2008-03, Vol.21 (3), p.619-632
issn 0893-228X
1520-5010
language eng
recordid cdi_proquest_miscellaneous_20768641
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Artificial Intelligence
Computer Simulation
Entropy
Gene Library
Markov Chains
Mass Spectrometry
Models, Statistical
Proteome - drug effects
Quantitative Structure-Activity Relationship
Toxicology - methods
title 3D-MEDNEs: An Alternative “in Silico” Technique for Chemical Research in Toxicology. 2. Quantitative Proteome−Toxicity Relationships (QPTR) based on Mass Spectrum Spiral Entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-MEDNEs:%20An%20Alternative%20%E2%80%9Cin%20Silico%E2%80%9D%20Technique%20for%20Chemical%20Research%20in%20Toxicology.%202.%20Quantitative%20Proteome%E2%88%92Toxicity%20Relationships%20(QPTR)%20based%20on%20Mass%20Spectrum%20Spiral%20Entropy&rft.jtitle=Chemical%20research%20in%20toxicology&rft.au=Cruz-Monteagudo,%20Maykel&rft.date=2008-03-01&rft.volume=21&rft.issue=3&rft.spage=619&rft.epage=632&rft.pages=619-632&rft.issn=0893-228X&rft.eissn=1520-5010&rft_id=info:doi/10.1021/tx700296t&rft_dat=%3Cproquest_cross%3E20768641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20768641&rft_id=info:pmid/18257557&rfr_iscdi=true