Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms

The effects of changes in atmospheric mercury (Hg) deposition on aquatic ecosystems are poorly understood. In this study, we examined the biogeochemical cycling of Hg in littoral mesocosms receiving different loading rates (7−107 μg Hg m-2 year-1). We added a 202Hg-enriched preparation to differenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2006-10, Vol.40 (19), p.5992-6000
Hauptverfasser: Orihel, Diane M, Paterson, Michael J, Gilmour, Cynthia C, Bodaly, R. A. (Drew), Blanchfield, Paul J, Hintelmann, Holger, Harris, Reed C, Rudd, John W. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6000
container_issue 19
container_start_page 5992
container_title Environmental science & technology
container_volume 40
creator Orihel, Diane M
Paterson, Michael J
Gilmour, Cynthia C
Bodaly, R. A. (Drew)
Blanchfield, Paul J
Hintelmann, Holger
Harris, Reed C
Rudd, John W. M
description The effects of changes in atmospheric mercury (Hg) deposition on aquatic ecosystems are poorly understood. In this study, we examined the biogeochemical cycling of Hg in littoral mesocosms receiving different loading rates (7−107 μg Hg m-2 year-1). We added a 202Hg-enriched preparation to differentiate the experimentally added Hg from the ambient Hg in the environment. This approach allowed us to follow the distribution and methylation of the isotopically enriched (“spike”) Hg in the mesocosms. Within 3 weeks, spike Hg was distributed throughout the main environmental compartments (water, particles, periphyton, and sediments) and began to be converted to methylmercury (MeHg). Concentrations of spike total Hg and MeHg in these compartments, measured after 8 weeks, were directly proportional to loading rates. Thus, Hg(II) availability was the limiting factor for the major processes of the biogeochemical Hg cycle, including methylation. This is the first study to demonstrate a proportional response of in situ MeHg production to atmospherically relevant loading levels. On the basis of mass balances, we conclude that loading rate had no effect on the relative distribution of spike Hg among the main compartments or on the fraction of spike Hg converted to MeHg. Therefore, loading rate did not change the relative magnitude of biogeochemical pathways competing for Hg within the mesocosms. These data suggest that reductions of Hg deposition to lake surfaces would be equally effective across a broad range of deposition rates.
doi_str_mv 10.1021/es060823+
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20765352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20765352</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-4d6418e646172c48ebcea27a55ae68c036ee3ae650a5eca4b9c93543af68300d3</originalsourceid><addsrcrecordid>eNqF0E2LFDEQBuAgijuuHvwDEmQVQVorSeejjzrsqtii6ApzCzWZau21p7Mm3eD-e7PO6IAePKVIHoq8L2P3BTwTIMVzymDASfX0BlsILaHSToubbAEgVNUoszpid3K-AACpwN1mR8KCFraBBVuedh2FiceOtxE3_fiFf8SJeBz59JX42a-54-8ohTld8X7kbT9NMeFQ7nIMMW_zXXarwyHTvf15zD6fnZ4vX1ft-1dvli_aCrVSU1VvTC0cmdoIK0PtaB0IpUWtkYwLoAyRKqMG1BSwXjehUbpW2BmnADbqmD3e7b1M8ftMefLbPgcaBhwpztlLsEYrLf8LRW2dNsoV-PAveBHnNJYQvjQlZN00pqAnOxRSzDlR5y9Tv8V05QX46_797_4LfbDfN6-3tDnAfd8FPNoDzAGHLuEY-nxwTljntC2u2rk-T_Tjzzumb95YZbU___DJr142b1euFf46yMnOY8iHDP_87ycmFqRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230124996</pqid></control><display><type>article</type><title>Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Orihel, Diane M ; Paterson, Michael J ; Gilmour, Cynthia C ; Bodaly, R. A. (Drew) ; Blanchfield, Paul J ; Hintelmann, Holger ; Harris, Reed C ; Rudd, John W. M</creator><creatorcontrib>Orihel, Diane M ; Paterson, Michael J ; Gilmour, Cynthia C ; Bodaly, R. A. (Drew) ; Blanchfield, Paul J ; Hintelmann, Holger ; Harris, Reed C ; Rudd, John W. M</creatorcontrib><description>The effects of changes in atmospheric mercury (Hg) deposition on aquatic ecosystems are poorly understood. In this study, we examined the biogeochemical cycling of Hg in littoral mesocosms receiving different loading rates (7−107 μg Hg m-2 year-1). We added a 202Hg-enriched preparation to differentiate the experimentally added Hg from the ambient Hg in the environment. This approach allowed us to follow the distribution and methylation of the isotopically enriched (“spike”) Hg in the mesocosms. Within 3 weeks, spike Hg was distributed throughout the main environmental compartments (water, particles, periphyton, and sediments) and began to be converted to methylmercury (MeHg). Concentrations of spike total Hg and MeHg in these compartments, measured after 8 weeks, were directly proportional to loading rates. Thus, Hg(II) availability was the limiting factor for the major processes of the biogeochemical Hg cycle, including methylation. This is the first study to demonstrate a proportional response of in situ MeHg production to atmospherically relevant loading levels. On the basis of mass balances, we conclude that loading rate had no effect on the relative distribution of spike Hg among the main compartments or on the fraction of spike Hg converted to MeHg. Therefore, loading rate did not change the relative magnitude of biogeochemical pathways competing for Hg within the mesocosms. These data suggest that reductions of Hg deposition to lake surfaces would be equally effective across a broad range of deposition rates.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es060823+</identifier><identifier>PMID: 17051790</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air Pollutants ; Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; Aquatic ecosystems ; Atmospheric chemistry ; Biogeochemistry ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Ecotoxicology, biological effects of pollution ; Engineering and environment geology. Geothermics ; Eukaryota - chemistry ; Exact sciences and technology ; Fresh Water - chemistry ; Fresh water environment ; Fundamental and applied biological sciences. Psychology ; Geologic Sediments - chemistry ; Global environmental pollution ; Mercury ; Mercury - analysis ; Methylmercury Compounds - analysis ; Pollution ; Pollution, environment geology ; Water Pollutants, Chemical - analysis</subject><ispartof>Environmental science &amp; technology, 2006-10, Vol.40 (19), p.5992-6000</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-4d6418e646172c48ebcea27a55ae68c036ee3ae650a5eca4b9c93543af68300d3</citedby><cites>FETCH-LOGICAL-a533t-4d6418e646172c48ebcea27a55ae68c036ee3ae650a5eca4b9c93543af68300d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es060823+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es060823+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18178857$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17051790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orihel, Diane M</creatorcontrib><creatorcontrib>Paterson, Michael J</creatorcontrib><creatorcontrib>Gilmour, Cynthia C</creatorcontrib><creatorcontrib>Bodaly, R. A. (Drew)</creatorcontrib><creatorcontrib>Blanchfield, Paul J</creatorcontrib><creatorcontrib>Hintelmann, Holger</creatorcontrib><creatorcontrib>Harris, Reed C</creatorcontrib><creatorcontrib>Rudd, John W. M</creatorcontrib><title>Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The effects of changes in atmospheric mercury (Hg) deposition on aquatic ecosystems are poorly understood. In this study, we examined the biogeochemical cycling of Hg in littoral mesocosms receiving different loading rates (7−107 μg Hg m-2 year-1). We added a 202Hg-enriched preparation to differentiate the experimentally added Hg from the ambient Hg in the environment. This approach allowed us to follow the distribution and methylation of the isotopically enriched (“spike”) Hg in the mesocosms. Within 3 weeks, spike Hg was distributed throughout the main environmental compartments (water, particles, periphyton, and sediments) and began to be converted to methylmercury (MeHg). Concentrations of spike total Hg and MeHg in these compartments, measured after 8 weeks, were directly proportional to loading rates. Thus, Hg(II) availability was the limiting factor for the major processes of the biogeochemical Hg cycle, including methylation. This is the first study to demonstrate a proportional response of in situ MeHg production to atmospherically relevant loading levels. On the basis of mass balances, we conclude that loading rate had no effect on the relative distribution of spike Hg among the main compartments or on the fraction of spike Hg converted to MeHg. Therefore, loading rate did not change the relative magnitude of biogeochemical pathways competing for Hg within the mesocosms. These data suggest that reductions of Hg deposition to lake surfaces would be equally effective across a broad range of deposition rates.</description><subject>Air Pollutants</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Aquatic ecosystems</subject><subject>Atmospheric chemistry</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Eukaryota - chemistry</subject><subject>Exact sciences and technology</subject><subject>Fresh Water - chemistry</subject><subject>Fresh water environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geologic Sediments - chemistry</subject><subject>Global environmental pollution</subject><subject>Mercury</subject><subject>Mercury - analysis</subject><subject>Methylmercury Compounds - analysis</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E2LFDEQBuAgijuuHvwDEmQVQVorSeejjzrsqtii6ApzCzWZau21p7Mm3eD-e7PO6IAePKVIHoq8L2P3BTwTIMVzymDASfX0BlsILaHSToubbAEgVNUoszpid3K-AACpwN1mR8KCFraBBVuedh2FiceOtxE3_fiFf8SJeBz59JX42a-54-8ohTld8X7kbT9NMeFQ7nIMMW_zXXarwyHTvf15zD6fnZ4vX1ft-1dvli_aCrVSU1VvTC0cmdoIK0PtaB0IpUWtkYwLoAyRKqMG1BSwXjehUbpW2BmnADbqmD3e7b1M8ftMefLbPgcaBhwpztlLsEYrLf8LRW2dNsoV-PAveBHnNJYQvjQlZN00pqAnOxRSzDlR5y9Tv8V05QX46_797_4LfbDfN6-3tDnAfd8FPNoDzAGHLuEY-nxwTljntC2u2rk-T_Tjzzumb95YZbU___DJr142b1euFf46yMnOY8iHDP_87ycmFqRK</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Orihel, Diane M</creator><creator>Paterson, Michael J</creator><creator>Gilmour, Cynthia C</creator><creator>Bodaly, R. A. (Drew)</creator><creator>Blanchfield, Paul J</creator><creator>Hintelmann, Holger</creator><creator>Harris, Reed C</creator><creator>Rudd, John W. M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20061001</creationdate><title>Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms</title><author>Orihel, Diane M ; Paterson, Michael J ; Gilmour, Cynthia C ; Bodaly, R. A. (Drew) ; Blanchfield, Paul J ; Hintelmann, Holger ; Harris, Reed C ; Rudd, John W. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-4d6418e646172c48ebcea27a55ae68c036ee3ae650a5eca4b9c93543af68300d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Air Pollutants</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Aquatic ecosystems</topic><topic>Atmospheric chemistry</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Eukaryota - chemistry</topic><topic>Exact sciences and technology</topic><topic>Fresh Water - chemistry</topic><topic>Fresh water environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geologic Sediments - chemistry</topic><topic>Global environmental pollution</topic><topic>Mercury</topic><topic>Mercury - analysis</topic><topic>Methylmercury Compounds - analysis</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orihel, Diane M</creatorcontrib><creatorcontrib>Paterson, Michael J</creatorcontrib><creatorcontrib>Gilmour, Cynthia C</creatorcontrib><creatorcontrib>Bodaly, R. A. (Drew)</creatorcontrib><creatorcontrib>Blanchfield, Paul J</creatorcontrib><creatorcontrib>Hintelmann, Holger</creatorcontrib><creatorcontrib>Harris, Reed C</creatorcontrib><creatorcontrib>Rudd, John W. M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orihel, Diane M</au><au>Paterson, Michael J</au><au>Gilmour, Cynthia C</au><au>Bodaly, R. A. (Drew)</au><au>Blanchfield, Paul J</au><au>Hintelmann, Holger</au><au>Harris, Reed C</au><au>Rudd, John W. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>40</volume><issue>19</issue><spage>5992</spage><epage>6000</epage><pages>5992-6000</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The effects of changes in atmospheric mercury (Hg) deposition on aquatic ecosystems are poorly understood. In this study, we examined the biogeochemical cycling of Hg in littoral mesocosms receiving different loading rates (7−107 μg Hg m-2 year-1). We added a 202Hg-enriched preparation to differentiate the experimentally added Hg from the ambient Hg in the environment. This approach allowed us to follow the distribution and methylation of the isotopically enriched (“spike”) Hg in the mesocosms. Within 3 weeks, spike Hg was distributed throughout the main environmental compartments (water, particles, periphyton, and sediments) and began to be converted to methylmercury (MeHg). Concentrations of spike total Hg and MeHg in these compartments, measured after 8 weeks, were directly proportional to loading rates. Thus, Hg(II) availability was the limiting factor for the major processes of the biogeochemical Hg cycle, including methylation. This is the first study to demonstrate a proportional response of in situ MeHg production to atmospherically relevant loading levels. On the basis of mass balances, we conclude that loading rate had no effect on the relative distribution of spike Hg among the main compartments or on the fraction of spike Hg converted to MeHg. Therefore, loading rate did not change the relative magnitude of biogeochemical pathways competing for Hg within the mesocosms. These data suggest that reductions of Hg deposition to lake surfaces would be equally effective across a broad range of deposition rates.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17051790</pmid><doi>10.1021/es060823+</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2006-10, Vol.40 (19), p.5992-6000
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_20765352
source MEDLINE; American Chemical Society Journals
subjects Air Pollutants
Animal, plant and microbial ecology
Applied ecology
Applied sciences
Aquatic ecosystems
Atmospheric chemistry
Biogeochemistry
Biological and medical sciences
Earth sciences
Earth, ocean, space
Ecotoxicology, biological effects of pollution
Engineering and environment geology. Geothermics
Eukaryota - chemistry
Exact sciences and technology
Fresh Water - chemistry
Fresh water environment
Fundamental and applied biological sciences. Psychology
Geologic Sediments - chemistry
Global environmental pollution
Mercury
Mercury - analysis
Methylmercury Compounds - analysis
Pollution
Pollution, environment geology
Water Pollutants, Chemical - analysis
title Effect of Loading Rate on the Fate of Mercury in Littoral Mesocosms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Loading%20Rate%20on%20the%20Fate%20of%20Mercury%20in%20Littoral%20Mesocosms&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Orihel,%20Diane%20M&rft.date=2006-10-01&rft.volume=40&rft.issue=19&rft.spage=5992&rft.epage=6000&rft.pages=5992-6000&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es060823+&rft_dat=%3Cproquest_cross%3E20765352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230124996&rft_id=info:pmid/17051790&rfr_iscdi=true