11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability
All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-09, Vol.30 (36), p.e1803166-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e1803166 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Zhang, Kai Xia, Ruoxi Fan, Baobing Liu, Xiang Wang, Zhenfeng Dong, Sheng Yip, Hin‐Lap Ying, Lei Huang, Fei Cao, Yong |
description | All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.
Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure. |
doi_str_mv | 10.1002/adma.201803166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2076238752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076238752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgio6XrUsJiOCm4zlNmjbLYbyCojC6E0qaphhJp9q0Dt35CD6jT2JkvIAbV2fznZ-fn5BdhDECxEeqrNU4BsyAoRArZIRJjBEHmaySEUiWRFLwbINsev8IAFKAWCcbDIBzADEi94jj-IBOnHt_fbtp3FCblt6qeWlqOmucaunUOOfpwnYPdGbr3nVqbpreu4Fe1E9t82JKelJVVlsz1wMNn3TWqcI62w3bZK1Szpudr7tF7k5Pbqfn0eX12cV0chlpljIRIS8MqpjpQguogAsuFGCZcsbTQqsMkLMUQZcyqyQrkEuRpAXPEhAMTZmxLXK4zA19nnvju7y2Xofey6p5DKmIWZYmcaD7f-hj07fz0C4oGQimkgU1XirdNt63psqfWlurdsgR8s_d88_d85_dw8PeV2xf1Kb84d9DByCXYGGdGf6JyyfHV5Pf8A_g8I0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098751793</pqid></control><display><type>article</type><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><source>Access via Wiley Online Library</source><creator>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</creator><creatorcontrib>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</creatorcontrib><description>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.
Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201803166</identifier><identifier>PMID: 30044006</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all‐polymer solar cell ; Diffusion barriers ; Diffusion rate ; Efficiency ; Energy conversion efficiency ; homojunction tandem ; Homojunctions ; Interface stability ; interfacial charge dissociation ; interfacial stability ; Interlayers ; Materials science ; Organic chemistry ; Photovoltaic cells ; Polymers ; Solar cells</subject><ispartof>Advanced materials (Weinheim), 2018-09, Vol.30 (36), p.e1803166-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</citedby><cites>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</cites><orcidid>0000-0003-2931-7135 ; 0000-0001-9665-6642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201803166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201803166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30044006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Zhenfeng</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.
Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</description><subject>all‐polymer solar cell</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>homojunction tandem</subject><subject>Homojunctions</subject><subject>Interface stability</subject><subject>interfacial charge dissociation</subject><subject>interfacial stability</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKxDAUBuAgio6XrUsJiOCm4zlNmjbLYbyCojC6E0qaphhJp9q0Dt35CD6jT2JkvIAbV2fznZ-fn5BdhDECxEeqrNU4BsyAoRArZIRJjBEHmaySEUiWRFLwbINsev8IAFKAWCcbDIBzADEi94jj-IBOnHt_fbtp3FCblt6qeWlqOmucaunUOOfpwnYPdGbr3nVqbpreu4Fe1E9t82JKelJVVlsz1wMNn3TWqcI62w3bZK1Szpudr7tF7k5Pbqfn0eX12cV0chlpljIRIS8MqpjpQguogAsuFGCZcsbTQqsMkLMUQZcyqyQrkEuRpAXPEhAMTZmxLXK4zA19nnvju7y2Xofey6p5DKmIWZYmcaD7f-hj07fz0C4oGQimkgU1XirdNt63psqfWlurdsgR8s_d88_d85_dw8PeV2xf1Kb84d9DByCXYGGdGf6JyyfHV5Pf8A_g8I0n</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Zhang, Kai</creator><creator>Xia, Ruoxi</creator><creator>Fan, Baobing</creator><creator>Liu, Xiang</creator><creator>Wang, Zhenfeng</creator><creator>Dong, Sheng</creator><creator>Yip, Hin‐Lap</creator><creator>Ying, Lei</creator><creator>Huang, Fei</creator><creator>Cao, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2931-7135</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></search><sort><creationdate>20180906</creationdate><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><author>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>all‐polymer solar cell</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>homojunction tandem</topic><topic>Homojunctions</topic><topic>Interface stability</topic><topic>interfacial charge dissociation</topic><topic>interfacial stability</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Zhenfeng</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Xia, Ruoxi</au><au>Fan, Baobing</au><au>Liu, Xiang</au><au>Wang, Zhenfeng</au><au>Dong, Sheng</au><au>Yip, Hin‐Lap</au><au>Ying, Lei</au><au>Huang, Fei</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>30</volume><issue>36</issue><spage>e1803166</spage><epage>n/a</epage><pages>e1803166-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.
Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30044006</pmid><doi>10.1002/adma.201803166</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2931-7135</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-09, Vol.30 (36), p.e1803166-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2076238752 |
source | Access via Wiley Online Library |
subjects | all‐polymer solar cell Diffusion barriers Diffusion rate Efficiency Energy conversion efficiency homojunction tandem Homojunctions Interface stability interfacial charge dissociation interfacial stability Interlayers Materials science Organic chemistry Photovoltaic cells Polymers Solar cells |
title | 11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=11.2%25%20All%E2%80%90Polymer%20Tandem%20Solar%20Cells%20with%20Simultaneously%20Improved%20Efficiency%20and%20Stability&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Kai&rft.date=2018-09-06&rft.volume=30&rft.issue=36&rft.spage=e1803166&rft.epage=n/a&rft.pages=e1803166-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201803166&rft_dat=%3Cproquest_cross%3E2076238752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098751793&rft_id=info:pmid/30044006&rfr_iscdi=true |