11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability

All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-09, Vol.30 (36), p.e1803166-n/a
Hauptverfasser: Zhang, Kai, Xia, Ruoxi, Fan, Baobing, Liu, Xiang, Wang, Zhenfeng, Dong, Sheng, Yip, Hin‐Lap, Ying, Lei, Huang, Fei, Cao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e1803166
container_title Advanced materials (Weinheim)
container_volume 30
creator Zhang, Kai
Xia, Ruoxi
Fan, Baobing
Liu, Xiang
Wang, Zhenfeng
Dong, Sheng
Yip, Hin‐Lap
Ying, Lei
Huang, Fei
Cao, Yong
description All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h. Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.
doi_str_mv 10.1002/adma.201803166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2076238752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076238752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</originalsourceid><addsrcrecordid>eNqF0MtKxDAUBuAgio6XrUsJiOCm4zlNmjbLYbyCojC6E0qaphhJp9q0Dt35CD6jT2JkvIAbV2fznZ-fn5BdhDECxEeqrNU4BsyAoRArZIRJjBEHmaySEUiWRFLwbINsev8IAFKAWCcbDIBzADEi94jj-IBOnHt_fbtp3FCblt6qeWlqOmucaunUOOfpwnYPdGbr3nVqbpreu4Fe1E9t82JKelJVVlsz1wMNn3TWqcI62w3bZK1Szpudr7tF7k5Pbqfn0eX12cV0chlpljIRIS8MqpjpQguogAsuFGCZcsbTQqsMkLMUQZcyqyQrkEuRpAXPEhAMTZmxLXK4zA19nnvju7y2Xofey6p5DKmIWZYmcaD7f-hj07fz0C4oGQimkgU1XirdNt63psqfWlurdsgR8s_d88_d85_dw8PeV2xf1Kb84d9DByCXYGGdGf6JyyfHV5Pf8A_g8I0n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098751793</pqid></control><display><type>article</type><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><source>Access via Wiley Online Library</source><creator>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</creator><creatorcontrib>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</creatorcontrib><description>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h. Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201803166</identifier><identifier>PMID: 30044006</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all‐polymer solar cell ; Diffusion barriers ; Diffusion rate ; Efficiency ; Energy conversion efficiency ; homojunction tandem ; Homojunctions ; Interface stability ; interfacial charge dissociation ; interfacial stability ; Interlayers ; Materials science ; Organic chemistry ; Photovoltaic cells ; Polymers ; Solar cells</subject><ispartof>Advanced materials (Weinheim), 2018-09, Vol.30 (36), p.e1803166-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</citedby><cites>FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</cites><orcidid>0000-0003-2931-7135 ; 0000-0001-9665-6642</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201803166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201803166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30044006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Zhenfeng</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h. Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</description><subject>all‐polymer solar cell</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>homojunction tandem</subject><subject>Homojunctions</subject><subject>Interface stability</subject><subject>interfacial charge dissociation</subject><subject>interfacial stability</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0MtKxDAUBuAgio6XrUsJiOCm4zlNmjbLYbyCojC6E0qaphhJp9q0Dt35CD6jT2JkvIAbV2fznZ-fn5BdhDECxEeqrNU4BsyAoRArZIRJjBEHmaySEUiWRFLwbINsev8IAFKAWCcbDIBzADEi94jj-IBOnHt_fbtp3FCblt6qeWlqOmucaunUOOfpwnYPdGbr3nVqbpreu4Fe1E9t82JKelJVVlsz1wMNn3TWqcI62w3bZK1Szpudr7tF7k5Pbqfn0eX12cV0chlpljIRIS8MqpjpQguogAsuFGCZcsbTQqsMkLMUQZcyqyQrkEuRpAXPEhAMTZmxLXK4zA19nnvju7y2Xofey6p5DKmIWZYmcaD7f-hj07fz0C4oGQimkgU1XirdNt63psqfWlurdsgR8s_d88_d85_dw8PeV2xf1Kb84d9DByCXYGGdGf6JyyfHV5Pf8A_g8I0n</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>Zhang, Kai</creator><creator>Xia, Ruoxi</creator><creator>Fan, Baobing</creator><creator>Liu, Xiang</creator><creator>Wang, Zhenfeng</creator><creator>Dong, Sheng</creator><creator>Yip, Hin‐Lap</creator><creator>Ying, Lei</creator><creator>Huang, Fei</creator><creator>Cao, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2931-7135</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></search><sort><creationdate>20180906</creationdate><title>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</title><author>Zhang, Kai ; Xia, Ruoxi ; Fan, Baobing ; Liu, Xiang ; Wang, Zhenfeng ; Dong, Sheng ; Yip, Hin‐Lap ; Ying, Lei ; Huang, Fei ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-14be1a23cbc60f04646a01d74347bca80143710cd98f93b149657b4850631ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>all‐polymer solar cell</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>homojunction tandem</topic><topic>Homojunctions</topic><topic>Interface stability</topic><topic>interfacial charge dissociation</topic><topic>interfacial stability</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Wang, Zhenfeng</creatorcontrib><creatorcontrib>Dong, Sheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Ying, Lei</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Xia, Ruoxi</au><au>Fan, Baobing</au><au>Liu, Xiang</au><au>Wang, Zhenfeng</au><au>Dong, Sheng</au><au>Yip, Hin‐Lap</au><au>Ying, Lei</au><au>Huang, Fei</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>30</volume><issue>36</issue><spage>e1803166</spage><epage>n/a</epage><pages>e1803166-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>All‐polymer solar cells (all‐PSCs) that contain both p‐type and n‐type polymeric materials blended together as light‐absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular‐based organic solar cells. In this work, the interfacial stability is studied by using highly stable all‐polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all‐PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h. Interfacial stability is studied by using a highly stable all‐polymer solar cell as a platform. The thermally deposited metal electrode atoms can diffuse into the active layer, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion can be slowed down and even blocked by using thicker interlayer materials, high‐glass‐transition‐temperature interlayer materials and a tandem device structure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30044006</pmid><doi>10.1002/adma.201803166</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2931-7135</orcidid><orcidid>https://orcid.org/0000-0001-9665-6642</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-09, Vol.30 (36), p.e1803166-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2076238752
source Access via Wiley Online Library
subjects all‐polymer solar cell
Diffusion barriers
Diffusion rate
Efficiency
Energy conversion efficiency
homojunction tandem
Homojunctions
Interface stability
interfacial charge dissociation
interfacial stability
Interlayers
Materials science
Organic chemistry
Photovoltaic cells
Polymers
Solar cells
title 11.2% All‐Polymer Tandem Solar Cells with Simultaneously Improved Efficiency and Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=11.2%25%20All%E2%80%90Polymer%20Tandem%20Solar%20Cells%20with%20Simultaneously%20Improved%20Efficiency%20and%20Stability&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Kai&rft.date=2018-09-06&rft.volume=30&rft.issue=36&rft.spage=e1803166&rft.epage=n/a&rft.pages=e1803166-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201803166&rft_dat=%3Cproquest_cross%3E2076238752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2098751793&rft_id=info:pmid/30044006&rfr_iscdi=true