Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models
Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remode...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2019-05, Vol.149 (4), p.499-517 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 517 |
---|---|
container_issue | 4 |
container_start_page | 499 |
container_title | Journal of neurochemistry |
container_volume | 149 |
creator | Granger, Matthew W. Liu, Hui Fowler, Caitlin F. Blanchard, Alexandre P. Taylor, Matthew W. Sherman, Samantha P. M. Xu, Hongbin Le, Weidong Bennett, Steffany A. L. |
description | Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal‐parietal‐entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over‐expressing mice. We identified a cortex‐specific hypo‐metabolic signature at symptomatic onset and a cortex‐specific hyper‐metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPSwe/PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso‐phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso‐platelet‐activating factor (PAF), LPC(O‐18:0/0:0), and the PAF, PC(O‐22:6/2:0), declined as a result of reduced calcium‐dependent cytosolic phospholipase A2α (cPLA2α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPSwe/PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age‐independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2α activity progressively increased; overall Lyso‐phosphatidylcholines (LPC) and LPC(O) and PC(O‐18:1/2:0) levels progressively rose. Enhanced cPLA2α activity was only detected in transgenic mice; however, age‐dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non‐transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age‐independent and age‐dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre‐existing Αβ pathology.
Open science badges
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Using unbiased lipidomic approches, we profiled the glycerophosphocholine metabolome in hippocampus and |
doi_str_mv | 10.1111/jnc.14560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2076232329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076232329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-30603f08e8e7fb8c01a06faf8d427ab0a629147096a4c878640c831c8dfd72813</originalsourceid><addsrcrecordid>eNp1kU2P0zAQhi0EYsvCgT-ALHEADt0dO17HPa7Ktyq4wDlynUnrEsfBdrSEf8S_ZLZdOCBhyx-Sn3lnPC9jTwVcCBqXh8FdCHWl4R5bCFWLpRJXq_tsASDlsgIlz9ijnA8AQistHrKzCkCBqdWC_Xrtc_GDK7z1OU1j8XHI3A98Y4f2ReZudj3yhCG22Pthx2PHd_3sMMVxHzMtt4_0gMegMCW6chdTwR882PSN5zmMJQZbvOMkjYWTMB9T3CXMmbLdxpWbyK_7n3v0ARNlpVrQZuQhTsedcufH7EFn-4xP7s5z9vXtmy_r98vN53cf1tebpauMAfquhqoDgwbrbmscCAu6s51plaztFqyWK-oRrLRVztRGK3CmEs60XVtLI6pz9vKkSzV-nzCXJvjssO_tgFROI6HWsqK5IvT5P-ghTmmg6hopJUkLAEPUqxPlUsw5YdeMyVNv5kZAc-tfQ_41R_-IfXanOG0Dtn_JP4YRcHkCbnyP8_-Vmo-f1ifJ30Fjp3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228641008</pqid></control><display><type>article</type><title>Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Granger, Matthew W. ; Liu, Hui ; Fowler, Caitlin F. ; Blanchard, Alexandre P. ; Taylor, Matthew W. ; Sherman, Samantha P. M. ; Xu, Hongbin ; Le, Weidong ; Bennett, Steffany A. L.</creator><creatorcontrib>Granger, Matthew W. ; Liu, Hui ; Fowler, Caitlin F. ; Blanchard, Alexandre P. ; Taylor, Matthew W. ; Sherman, Samantha P. M. ; Xu, Hongbin ; Le, Weidong ; Bennett, Steffany A. L.</creatorcontrib><description>Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal‐parietal‐entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over‐expressing mice. We identified a cortex‐specific hypo‐metabolic signature at symptomatic onset and a cortex‐specific hyper‐metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPSwe/PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso‐phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso‐platelet‐activating factor (PAF), LPC(O‐18:0/0:0), and the PAF, PC(O‐22:6/2:0), declined as a result of reduced calcium‐dependent cytosolic phospholipase A2α (cPLA2α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPSwe/PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age‐independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2α activity progressively increased; overall Lyso‐phosphatidylcholines (LPC) and LPC(O) and PC(O‐18:1/2:0) levels progressively rose. Enhanced cPLA2α activity was only detected in transgenic mice; however, age‐dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non‐transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age‐independent and age‐dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre‐existing Αβ pathology.
Open science badges
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Using unbiased lipidomic approches, we profiled the glycerophosphocholine metabolome in hippocampus and cortices of human amyloid beta precursor protein (hAβPP) over‐expressing mice. We show that cPLA2α activity is suppressed and LPC, lyso‐PAF, and PAF levels decrease at symptomatic onset. These changes are seen in younger animals subjected to chronic intermittent hypoxia, a risk factor that accelerates onset of learning and memory deficits. Once hAβPP mice are fully impaired, cPLA2α activity rises; LPC and lyso‐PAF levels increase; PAFs accumulate in cortex. These data identify disruptions in Land's cycle glycerophosphocholine metabolism that discriminate between pre‐symptomatic, symptomatic, and fully impaired hAβPP over‐expressing mice.
Open Science: This manuscript was awarded with the Open Materials Badge
For more information see: https://cos.io/our-services/open-science-badges/
This article is related to the Special Issue “Vascular Dementia”.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/jnc.14560</identifier><identifier>PMID: 30040874</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>1-Alkyl-2-acetylglycerophosphocholine esterase ; Acetylcholinesterase ; Age ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Amyloid beta-Protein Precursor - toxicity ; Amyloid precursor protein ; Animal behavior ; Animal models ; Animals ; Calcium ; Cerebral Cortex - metabolism ; Cognitive ability ; Cortex (entorhinal) ; Cortex (frontal) ; Cortex (parietal) ; Cortex (temporal) ; Disease Models, Animal ; Disease Progression ; Environmental risk ; glycerophosphocholine ; Hippocampus ; Humans ; Hypoxia ; lipidomics ; Lipids ; Metabolism ; Mice ; Neurodegenerative diseases ; Phosphatidylcholines - metabolism ; Phospholipase ; Phospholipase A2 ; Platelet-activating factor ; Risk analysis ; Risk factors ; Transgenic animals ; Transgenic mice</subject><ispartof>Journal of neurochemistry, 2019-05, Vol.149 (4), p.499-517</ispartof><rights>2018 International Society for Neurochemistry</rights><rights>2018 International Society for Neurochemistry.</rights><rights>Copyright © 2019 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-30603f08e8e7fb8c01a06faf8d427ab0a629147096a4c878640c831c8dfd72813</citedby><cites>FETCH-LOGICAL-c3880-30603f08e8e7fb8c01a06faf8d427ab0a629147096a4c878640c831c8dfd72813</cites><orcidid>0000-0001-7944-5800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjnc.14560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjnc.14560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Granger, Matthew W.</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Fowler, Caitlin F.</creatorcontrib><creatorcontrib>Blanchard, Alexandre P.</creatorcontrib><creatorcontrib>Taylor, Matthew W.</creatorcontrib><creatorcontrib>Sherman, Samantha P. M.</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Le, Weidong</creatorcontrib><creatorcontrib>Bennett, Steffany A. L.</creatorcontrib><title>Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal‐parietal‐entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over‐expressing mice. We identified a cortex‐specific hypo‐metabolic signature at symptomatic onset and a cortex‐specific hyper‐metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPSwe/PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso‐phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso‐platelet‐activating factor (PAF), LPC(O‐18:0/0:0), and the PAF, PC(O‐22:6/2:0), declined as a result of reduced calcium‐dependent cytosolic phospholipase A2α (cPLA2α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPSwe/PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age‐independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2α activity progressively increased; overall Lyso‐phosphatidylcholines (LPC) and LPC(O) and PC(O‐18:1/2:0) levels progressively rose. Enhanced cPLA2α activity was only detected in transgenic mice; however, age‐dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non‐transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age‐independent and age‐dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre‐existing Αβ pathology.
Open science badges
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Using unbiased lipidomic approches, we profiled the glycerophosphocholine metabolome in hippocampus and cortices of human amyloid beta precursor protein (hAβPP) over‐expressing mice. We show that cPLA2α activity is suppressed and LPC, lyso‐PAF, and PAF levels decrease at symptomatic onset. These changes are seen in younger animals subjected to chronic intermittent hypoxia, a risk factor that accelerates onset of learning and memory deficits. Once hAβPP mice are fully impaired, cPLA2α activity rises; LPC and lyso‐PAF levels increase; PAFs accumulate in cortex. These data identify disruptions in Land's cycle glycerophosphocholine metabolism that discriminate between pre‐symptomatic, symptomatic, and fully impaired hAβPP over‐expressing mice.
Open Science: This manuscript was awarded with the Open Materials Badge
For more information see: https://cos.io/our-services/open-science-badges/
This article is related to the Special Issue “Vascular Dementia”.</description><subject>1-Alkyl-2-acetylglycerophosphocholine esterase</subject><subject>Acetylcholinesterase</subject><subject>Age</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Protein Precursor - toxicity</subject><subject>Amyloid precursor protein</subject><subject>Animal behavior</subject><subject>Animal models</subject><subject>Animals</subject><subject>Calcium</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cognitive ability</subject><subject>Cortex (entorhinal)</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Cortex (temporal)</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Environmental risk</subject><subject>glycerophosphocholine</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>lipidomics</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Neurodegenerative diseases</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phospholipase</subject><subject>Phospholipase A2</subject><subject>Platelet-activating factor</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2P0zAQhi0EYsvCgT-ALHEADt0dO17HPa7Ktyq4wDlynUnrEsfBdrSEf8S_ZLZdOCBhyx-Sn3lnPC9jTwVcCBqXh8FdCHWl4R5bCFWLpRJXq_tsASDlsgIlz9ijnA8AQistHrKzCkCBqdWC_Xrtc_GDK7z1OU1j8XHI3A98Y4f2ReZudj3yhCG22Pthx2PHd_3sMMVxHzMtt4_0gMegMCW6chdTwR882PSN5zmMJQZbvOMkjYWTMB9T3CXMmbLdxpWbyK_7n3v0ARNlpVrQZuQhTsedcufH7EFn-4xP7s5z9vXtmy_r98vN53cf1tebpauMAfquhqoDgwbrbmscCAu6s51plaztFqyWK-oRrLRVztRGK3CmEs60XVtLI6pz9vKkSzV-nzCXJvjssO_tgFROI6HWsqK5IvT5P-ghTmmg6hopJUkLAEPUqxPlUsw5YdeMyVNv5kZAc-tfQ_41R_-IfXanOG0Dtn_JP4YRcHkCbnyP8_-Vmo-f1ifJ30Fjp3A</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Granger, Matthew W.</creator><creator>Liu, Hui</creator><creator>Fowler, Caitlin F.</creator><creator>Blanchard, Alexandre P.</creator><creator>Taylor, Matthew W.</creator><creator>Sherman, Samantha P. M.</creator><creator>Xu, Hongbin</creator><creator>Le, Weidong</creator><creator>Bennett, Steffany A. L.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7944-5800</orcidid></search><sort><creationdate>201905</creationdate><title>Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models</title><author>Granger, Matthew W. ; Liu, Hui ; Fowler, Caitlin F. ; Blanchard, Alexandre P. ; Taylor, Matthew W. ; Sherman, Samantha P. M. ; Xu, Hongbin ; Le, Weidong ; Bennett, Steffany A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-30603f08e8e7fb8c01a06faf8d427ab0a629147096a4c878640c831c8dfd72813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-Alkyl-2-acetylglycerophosphocholine esterase</topic><topic>Acetylcholinesterase</topic><topic>Age</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Protein Precursor - toxicity</topic><topic>Amyloid precursor protein</topic><topic>Animal behavior</topic><topic>Animal models</topic><topic>Animals</topic><topic>Calcium</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cognitive ability</topic><topic>Cortex (entorhinal)</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Cortex (temporal)</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Environmental risk</topic><topic>glycerophosphocholine</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>lipidomics</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Neurodegenerative diseases</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phospholipase</topic><topic>Phospholipase A2</topic><topic>Platelet-activating factor</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granger, Matthew W.</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Fowler, Caitlin F.</creatorcontrib><creatorcontrib>Blanchard, Alexandre P.</creatorcontrib><creatorcontrib>Taylor, Matthew W.</creatorcontrib><creatorcontrib>Sherman, Samantha P. M.</creatorcontrib><creatorcontrib>Xu, Hongbin</creatorcontrib><creatorcontrib>Le, Weidong</creatorcontrib><creatorcontrib>Bennett, Steffany A. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granger, Matthew W.</au><au>Liu, Hui</au><au>Fowler, Caitlin F.</au><au>Blanchard, Alexandre P.</au><au>Taylor, Matthew W.</au><au>Sherman, Samantha P. M.</au><au>Xu, Hongbin</au><au>Le, Weidong</au><au>Bennett, Steffany A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2019-05</date><risdate>2019</risdate><volume>149</volume><issue>4</issue><spage>499</spage><epage>517</epage><pages>499-517</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal‐parietal‐entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over‐expressing mice. We identified a cortex‐specific hypo‐metabolic signature at symptomatic onset and a cortex‐specific hyper‐metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPSwe/PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso‐phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso‐platelet‐activating factor (PAF), LPC(O‐18:0/0:0), and the PAF, PC(O‐22:6/2:0), declined as a result of reduced calcium‐dependent cytosolic phospholipase A2α (cPLA2α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPSwe/PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age‐independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2α activity progressively increased; overall Lyso‐phosphatidylcholines (LPC) and LPC(O) and PC(O‐18:1/2:0) levels progressively rose. Enhanced cPLA2α activity was only detected in transgenic mice; however, age‐dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non‐transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age‐independent and age‐dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre‐existing Αβ pathology.
Open science badges
This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Using unbiased lipidomic approches, we profiled the glycerophosphocholine metabolome in hippocampus and cortices of human amyloid beta precursor protein (hAβPP) over‐expressing mice. We show that cPLA2α activity is suppressed and LPC, lyso‐PAF, and PAF levels decrease at symptomatic onset. These changes are seen in younger animals subjected to chronic intermittent hypoxia, a risk factor that accelerates onset of learning and memory deficits. Once hAβPP mice are fully impaired, cPLA2α activity rises; LPC and lyso‐PAF levels increase; PAFs accumulate in cortex. These data identify disruptions in Land's cycle glycerophosphocholine metabolism that discriminate between pre‐symptomatic, symptomatic, and fully impaired hAβPP over‐expressing mice.
Open Science: This manuscript was awarded with the Open Materials Badge
For more information see: https://cos.io/our-services/open-science-badges/
This article is related to the Special Issue “Vascular Dementia”.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30040874</pmid><doi>10.1111/jnc.14560</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7944-5800</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2019-05, Vol.149 (4), p.499-517 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_2076232329 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | 1-Alkyl-2-acetylglycerophosphocholine esterase Acetylcholinesterase Age Alzheimer Disease - metabolism Alzheimer's disease Amyloid beta-Protein Precursor - toxicity Amyloid precursor protein Animal behavior Animal models Animals Calcium Cerebral Cortex - metabolism Cognitive ability Cortex (entorhinal) Cortex (frontal) Cortex (parietal) Cortex (temporal) Disease Models, Animal Disease Progression Environmental risk glycerophosphocholine Hippocampus Humans Hypoxia lipidomics Lipids Metabolism Mice Neurodegenerative diseases Phosphatidylcholines - metabolism Phospholipase Phospholipase A2 Platelet-activating factor Risk analysis Risk factors Transgenic animals Transgenic mice |
title | Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20disruptions%20in%20Land's%20cycle%20remodeling%20of%20glycerophosphocholines%20in%20murine%20cortex%20mark%20symptomatic%20onset%20and%20progression%20in%20two%20Alzheimer's%20disease%20mouse%20models&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Granger,%20Matthew%20W.&rft.date=2019-05&rft.volume=149&rft.issue=4&rft.spage=499&rft.epage=517&rft.pages=499-517&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/jnc.14560&rft_dat=%3Cproquest_cross%3E2076232329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228641008&rft_id=info:pmid/30040874&rfr_iscdi=true |