Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges

The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2018-08, Vol.66 (30), p.7889-7898
Hauptverfasser: Schnoor, Brian, Elhendawy, Ahmad, Joseph, Suzanna, Putman, Mark, Chacón-Cerdas, Randall, Flores-Mora, Dora, Bravo-Moraga, Felipe, Gonzalez-Nilo, Fernando, Salvador-Morales, Carolina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7898
container_issue 30
container_start_page 7889
container_title Journal of agricultural and food chemistry
container_volume 66
creator Schnoor, Brian
Elhendawy, Ahmad
Joseph, Suzanna
Putman, Mark
Chacón-Cerdas, Randall
Flores-Mora, Dora
Bravo-Moraga, Felipe
Gonzalez-Nilo, Fernando
Salvador-Morales, Carolina
description The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly­(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant–nanoherbicide interaction as well as the role of PLGA as a growth potentiator.
doi_str_mv 10.1021/acs.jafc.8b01911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2075545782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2075545782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-e2d56523e570cb5fa471a340cf9e49bf97b742d74b5523f4512333f8cd4fb3233</originalsourceid><addsrcrecordid>eNp1kM9PwyAYhonRuDm9ezIcNbETCqztcVnmj2RRD3puKP2YGAoTOpP518vc9OaJj3zP-wYehM4pGVOS0xup4vhdajUuG0IrSg_QkIqcZILS8hANSWKyUkzoAJ3E-E4IKUVBjtGAEcKqgvAh8nO3NA4gGLfE0z7Ir3TDCy9baPGztxt8aaXqjcqUz5Z2o7w1Ck-Vaa_wo3R-JUNaWoi493jagTU-yB7w3H2a4F0HrpcWz96kteCWEE_RkZY2wtn-HKHX2_nL7D5bPN09zKaLTDI26TPIWzEROYP0XtUILXlBJeNE6Qp41eiqaAqetwVvRKI0FzRnjOlStVw3LM0jdLnrXQX_sYbY152JCqyVDvw61jkphOCiKPOEkh2qgo8xgK5XwXQybGpK6q3mOmmut5rrveYUudi3r5sO2r_Ar9cEXO-An6hfB5c--3_fN1spiWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075545782</pqid></control><display><type>article</type><title>Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges</title><source>American Chemical Society Journals</source><creator>Schnoor, Brian ; Elhendawy, Ahmad ; Joseph, Suzanna ; Putman, Mark ; Chacón-Cerdas, Randall ; Flores-Mora, Dora ; Bravo-Moraga, Felipe ; Gonzalez-Nilo, Fernando ; Salvador-Morales, Carolina</creator><creatorcontrib>Schnoor, Brian ; Elhendawy, Ahmad ; Joseph, Suzanna ; Putman, Mark ; Chacón-Cerdas, Randall ; Flores-Mora, Dora ; Bravo-Moraga, Felipe ; Gonzalez-Nilo, Fernando ; Salvador-Morales, Carolina</creatorcontrib><description>The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly­(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant–nanoherbicide interaction as well as the role of PLGA as a growth potentiator.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.8b01911</identifier><identifier>PMID: 30039704</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of agricultural and food chemistry, 2018-08, Vol.66 (30), p.7889-7898</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-e2d56523e570cb5fa471a340cf9e49bf97b742d74b5523f4512333f8cd4fb3233</citedby><cites>FETCH-LOGICAL-a336t-e2d56523e570cb5fa471a340cf9e49bf97b742d74b5523f4512333f8cd4fb3233</cites><orcidid>0000-0002-2588-6608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.8b01911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.8b01911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30039704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schnoor, Brian</creatorcontrib><creatorcontrib>Elhendawy, Ahmad</creatorcontrib><creatorcontrib>Joseph, Suzanna</creatorcontrib><creatorcontrib>Putman, Mark</creatorcontrib><creatorcontrib>Chacón-Cerdas, Randall</creatorcontrib><creatorcontrib>Flores-Mora, Dora</creatorcontrib><creatorcontrib>Bravo-Moraga, Felipe</creatorcontrib><creatorcontrib>Gonzalez-Nilo, Fernando</creatorcontrib><creatorcontrib>Salvador-Morales, Carolina</creatorcontrib><title>Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly­(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant–nanoherbicide interaction as well as the role of PLGA as a growth potentiator.</description><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwyAYhonRuDm9ezIcNbETCqztcVnmj2RRD3puKP2YGAoTOpP518vc9OaJj3zP-wYehM4pGVOS0xup4vhdajUuG0IrSg_QkIqcZILS8hANSWKyUkzoAJ3E-E4IKUVBjtGAEcKqgvAh8nO3NA4gGLfE0z7Ir3TDCy9baPGztxt8aaXqjcqUz5Z2o7w1Ck-Vaa_wo3R-JUNaWoi493jagTU-yB7w3H2a4F0HrpcWz96kteCWEE_RkZY2wtn-HKHX2_nL7D5bPN09zKaLTDI26TPIWzEROYP0XtUILXlBJeNE6Qp41eiqaAqetwVvRKI0FzRnjOlStVw3LM0jdLnrXQX_sYbY152JCqyVDvw61jkphOCiKPOEkh2qgo8xgK5XwXQybGpK6q3mOmmut5rrveYUudi3r5sO2r_Ar9cEXO-An6hfB5c--3_fN1spiWk</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Schnoor, Brian</creator><creator>Elhendawy, Ahmad</creator><creator>Joseph, Suzanna</creator><creator>Putman, Mark</creator><creator>Chacón-Cerdas, Randall</creator><creator>Flores-Mora, Dora</creator><creator>Bravo-Moraga, Felipe</creator><creator>Gonzalez-Nilo, Fernando</creator><creator>Salvador-Morales, Carolina</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2588-6608</orcidid></search><sort><creationdate>20180801</creationdate><title>Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges</title><author>Schnoor, Brian ; Elhendawy, Ahmad ; Joseph, Suzanna ; Putman, Mark ; Chacón-Cerdas, Randall ; Flores-Mora, Dora ; Bravo-Moraga, Felipe ; Gonzalez-Nilo, Fernando ; Salvador-Morales, Carolina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-e2d56523e570cb5fa471a340cf9e49bf97b742d74b5523f4512333f8cd4fb3233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schnoor, Brian</creatorcontrib><creatorcontrib>Elhendawy, Ahmad</creatorcontrib><creatorcontrib>Joseph, Suzanna</creatorcontrib><creatorcontrib>Putman, Mark</creatorcontrib><creatorcontrib>Chacón-Cerdas, Randall</creatorcontrib><creatorcontrib>Flores-Mora, Dora</creatorcontrib><creatorcontrib>Bravo-Moraga, Felipe</creatorcontrib><creatorcontrib>Gonzalez-Nilo, Fernando</creatorcontrib><creatorcontrib>Salvador-Morales, Carolina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schnoor, Brian</au><au>Elhendawy, Ahmad</au><au>Joseph, Suzanna</au><au>Putman, Mark</au><au>Chacón-Cerdas, Randall</au><au>Flores-Mora, Dora</au><au>Bravo-Moraga, Felipe</au><au>Gonzalez-Nilo, Fernando</au><au>Salvador-Morales, Carolina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>66</volume><issue>30</issue><spage>7889</spage><epage>7898</epage><pages>7889-7898</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>The use of herbicides plays a vital role in controlling weeds and conserving crops; however, its usage generates both environmental and economic problems. For example, herbicides pose a financial issue as farmers must apply large quantities to protect crops due to absorption rates of less than 0.1%. Therefore, there is a great need for the development of new methods to mitigate these issues. Here, we report for the first time the synthesis of poly­(lactic-co-glycolic-acid) (PLGA) nanoherbicides loaded with atrazine as an active ingredient. We used potato plants as a biological model to assess the herbicidal activity of the engineered PLGA nanoherbicides. Our method produced nanoherbicides with an average size of 110 ± 10 nm prior to lyophilization. Fifty percent of the loaded atrazine in the PLGA matrix is released in 72 h. Furthermore, we performed Monte Carlo simulations to determine the chemical interaction among atrazine, PLGA, and the solvent system. One of the most significant outcomes of these simulations was to find the formation of a hydrogen bond of 1.9 Å between PLGA and atrazine, which makes this interaction very stable. Our in vitro findings showed that as atrazine concentration is increased in PLGA nanoparticles, potato plants undergo a significant decrease in stem length, root length, fresh weight, dry weight, and the number of leaves, with root length being the most affected. These experimental results suggest the herbicidal effectiveness of atrazine-loaded PLGA nanoherbicides in inhibiting the growth of the potato plant. Hence, we present the proof-of-concept for using PLGA nanoherbicides as an alternative method for inhibiting weed growth. Future studies will involve a deep understanding of the mechanism of plant–nanoherbicide interaction as well as the role of PLGA as a growth potentiator.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30039704</pmid><doi>10.1021/acs.jafc.8b01911</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2588-6608</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2018-08, Vol.66 (30), p.7889-7898
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_2075545782
source American Chemical Society Journals
title Engineering Atrazine Loaded Poly (lactic-co-glycolic Acid) Nanoparticles to Ameliorate Environmental Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Atrazine%20Loaded%20Poly%20(lactic-co-glycolic%20Acid)%20Nanoparticles%20to%20Ameliorate%20Environmental%20Challenges&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Schnoor,%20Brian&rft.date=2018-08-01&rft.volume=66&rft.issue=30&rft.spage=7889&rft.epage=7898&rft.pages=7889-7898&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.8b01911&rft_dat=%3Cproquest_cross%3E2075545782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2075545782&rft_id=info:pmid/30039704&rfr_iscdi=true