State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system
This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2018-09, Vol.80, p.360-370 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | |
container_start_page | 360 |
container_title | ISA transactions |
container_volume | 80 |
creator | Wang, Guo Wang, Jiuhui Zhou, Zixuan Wang, Qiantao Wu, Qiong Jiang, Xingyu Santana, Efstathios |
description | This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay.
•Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method. |
doi_str_mv | 10.1016/j.isatra.2018.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2074140391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057818302726</els_id><sourcerecordid>2074140391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</originalsourceid><addsrcrecordid>eNp9kE1v1DAQQC0EokvhHyDkI5eEsZ3EyQUJFVoqVeIAnC3HniyzSpxie4si_jxebeHIyRrPm6_H2GsBtQDRvTvUlGyOtpYg-hp0DUI_YTvR66GSIOVTtgMQQwWt7i_Yi5QOACDboX_OLhSAUlI1O_b7a7YZ-YONZMcZeUb3I9DPI3JKsw2ewp57LL-Z1sCP6RRnWrCaIhYquI1jwLjfuA123hIlPq2Rf7y-veG_KHiej3GkUNoFvpCL6z6S52lLGZeX7Nlk54SvHt9L9v3607erz9Xdl5vbqw93lVOdzNWknZpG5b0erfej69q200Nvx066rlGtAun1gA57LTw6O_RYEjBNbhhLsleX7O25731cy84pm4WSw7nch-sxGQm6EQ2oQRS0OaNl05QiTuY-0mLjZgSYk3ZzMGft5qTdgDZFeyl78zjhOC7o_xX99VyA92cAy50PhNEkR8UeeorFrfEr_X_CH-cSmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074140391</pqid></control><display><type>article</type><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</creator><creatorcontrib>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</creatorcontrib><description>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay.
•Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2018.07.017</identifier><identifier>PMID: 30033234</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Islanding detection ; Neuro fuzzy ; Pattern learning ; Signal correlation ; Wavelet energy</subject><ispartof>ISA transactions, 2018-09, Vol.80, p.360-370</ispartof><rights>2018 ISA</rights><rights>Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</citedby><cites>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057818302726$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guo</creatorcontrib><creatorcontrib>Wang, Jiuhui</creatorcontrib><creatorcontrib>Zhou, Zixuan</creatorcontrib><creatorcontrib>Wang, Qiantao</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Santana, Efstathios</creatorcontrib><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay.
•Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</description><subject>Islanding detection</subject><subject>Neuro fuzzy</subject><subject>Pattern learning</subject><subject>Signal correlation</subject><subject>Wavelet energy</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQQC0EokvhHyDkI5eEsZ3EyQUJFVoqVeIAnC3HniyzSpxie4si_jxebeHIyRrPm6_H2GsBtQDRvTvUlGyOtpYg-hp0DUI_YTvR66GSIOVTtgMQQwWt7i_Yi5QOACDboX_OLhSAUlI1O_b7a7YZ-YONZMcZeUb3I9DPI3JKsw2ewp57LL-Z1sCP6RRnWrCaIhYquI1jwLjfuA123hIlPq2Rf7y-veG_KHiej3GkUNoFvpCL6z6S52lLGZeX7Nlk54SvHt9L9v3607erz9Xdl5vbqw93lVOdzNWknZpG5b0erfej69q200Nvx066rlGtAun1gA57LTw6O_RYEjBNbhhLsleX7O25731cy84pm4WSw7nch-sxGQm6EQ2oQRS0OaNl05QiTuY-0mLjZgSYk3ZzMGft5qTdgDZFeyl78zjhOC7o_xX99VyA92cAy50PhNEkR8UeeorFrfEr_X_CH-cSmNA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Wang, Guo</creator><creator>Wang, Jiuhui</creator><creator>Zhou, Zixuan</creator><creator>Wang, Qiantao</creator><creator>Wu, Qiong</creator><creator>Jiang, Xingyu</creator><creator>Santana, Efstathios</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><author>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Islanding detection</topic><topic>Neuro fuzzy</topic><topic>Pattern learning</topic><topic>Signal correlation</topic><topic>Wavelet energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guo</creatorcontrib><creatorcontrib>Wang, Jiuhui</creatorcontrib><creatorcontrib>Zhou, Zixuan</creatorcontrib><creatorcontrib>Wang, Qiantao</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Santana, Efstathios</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guo</au><au>Wang, Jiuhui</au><au>Zhou, Zixuan</au><au>Wang, Qiantao</au><au>Wu, Qiong</au><au>Jiang, Xingyu</au><au>Santana, Efstathios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2018-09</date><risdate>2018</risdate><volume>80</volume><spage>360</spage><epage>370</epage><pages>360-370</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay.
•Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30033234</pmid><doi>10.1016/j.isatra.2018.07.017</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2018-09, Vol.80, p.360-370 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_2074140391 |
source | Elsevier ScienceDirect Journals |
subjects | Islanding detection Neuro fuzzy Pattern learning Signal correlation Wavelet energy |
title | State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20variable%20technique%20islanding%20detection%20using%20time-frequency%20energy%20analysis%20for%20DFIG%20wind%20turbine%20in%20microgrid%20system&rft.jtitle=ISA%20transactions&rft.au=Wang,%20Guo&rft.date=2018-09&rft.volume=80&rft.spage=360&rft.epage=370&rft.pages=360-370&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2018.07.017&rft_dat=%3Cproquest_cross%3E2074140391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074140391&rft_id=info:pmid/30033234&rft_els_id=S0019057818302726&rfr_iscdi=true |