State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system

This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2018-09, Vol.80, p.360-370
Hauptverfasser: Wang, Guo, Wang, Jiuhui, Zhou, Zixuan, Wang, Qiantao, Wu, Qiong, Jiang, Xingyu, Santana, Efstathios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue
container_start_page 360
container_title ISA transactions
container_volume 80
creator Wang, Guo
Wang, Jiuhui
Zhou, Zixuan
Wang, Qiantao
Wu, Qiong
Jiang, Xingyu
Santana, Efstathios
description This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay. •Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.
doi_str_mv 10.1016/j.isatra.2018.07.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2074140391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057818302726</els_id><sourcerecordid>2074140391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</originalsourceid><addsrcrecordid>eNp9kE1v1DAQQC0EokvhHyDkI5eEsZ3EyQUJFVoqVeIAnC3HniyzSpxie4si_jxebeHIyRrPm6_H2GsBtQDRvTvUlGyOtpYg-hp0DUI_YTvR66GSIOVTtgMQQwWt7i_Yi5QOACDboX_OLhSAUlI1O_b7a7YZ-YONZMcZeUb3I9DPI3JKsw2ewp57LL-Z1sCP6RRnWrCaIhYquI1jwLjfuA123hIlPq2Rf7y-veG_KHiej3GkUNoFvpCL6z6S52lLGZeX7Nlk54SvHt9L9v3607erz9Xdl5vbqw93lVOdzNWknZpG5b0erfej69q200Nvx066rlGtAun1gA57LTw6O_RYEjBNbhhLsleX7O25731cy84pm4WSw7nch-sxGQm6EQ2oQRS0OaNl05QiTuY-0mLjZgSYk3ZzMGft5qTdgDZFeyl78zjhOC7o_xX99VyA92cAy50PhNEkR8UeeorFrfEr_X_CH-cSmNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2074140391</pqid></control><display><type>article</type><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</creator><creatorcontrib>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</creatorcontrib><description>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay. •Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2018.07.017</identifier><identifier>PMID: 30033234</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Islanding detection ; Neuro fuzzy ; Pattern learning ; Signal correlation ; Wavelet energy</subject><ispartof>ISA transactions, 2018-09, Vol.80, p.360-370</ispartof><rights>2018 ISA</rights><rights>Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</citedby><cites>FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057818302726$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30033234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guo</creatorcontrib><creatorcontrib>Wang, Jiuhui</creatorcontrib><creatorcontrib>Zhou, Zixuan</creatorcontrib><creatorcontrib>Wang, Qiantao</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Santana, Efstathios</creatorcontrib><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay. •Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</description><subject>Islanding detection</subject><subject>Neuro fuzzy</subject><subject>Pattern learning</subject><subject>Signal correlation</subject><subject>Wavelet energy</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQQC0EokvhHyDkI5eEsZ3EyQUJFVoqVeIAnC3HniyzSpxie4si_jxebeHIyRrPm6_H2GsBtQDRvTvUlGyOtpYg-hp0DUI_YTvR66GSIOVTtgMQQwWt7i_Yi5QOACDboX_OLhSAUlI1O_b7a7YZ-YONZMcZeUb3I9DPI3JKsw2ewp57LL-Z1sCP6RRnWrCaIhYquI1jwLjfuA123hIlPq2Rf7y-veG_KHiej3GkUNoFvpCL6z6S52lLGZeX7Nlk54SvHt9L9v3607erz9Xdl5vbqw93lVOdzNWknZpG5b0erfej69q200Nvx066rlGtAun1gA57LTw6O_RYEjBNbhhLsleX7O25731cy84pm4WSw7nch-sxGQm6EQ2oQRS0OaNl05QiTuY-0mLjZgSYk3ZzMGft5qTdgDZFeyl78zjhOC7o_xX99VyA92cAy50PhNEkR8UeeorFrfEr_X_CH-cSmNA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Wang, Guo</creator><creator>Wang, Jiuhui</creator><creator>Zhou, Zixuan</creator><creator>Wang, Qiantao</creator><creator>Wu, Qiong</creator><creator>Jiang, Xingyu</creator><creator>Santana, Efstathios</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</title><author>Wang, Guo ; Wang, Jiuhui ; Zhou, Zixuan ; Wang, Qiantao ; Wu, Qiong ; Jiang, Xingyu ; Santana, Efstathios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f7c3fb3dd7baddbc6556798ab62c6435302d79ece871deca98e2c60ffc9b53083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Islanding detection</topic><topic>Neuro fuzzy</topic><topic>Pattern learning</topic><topic>Signal correlation</topic><topic>Wavelet energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guo</creatorcontrib><creatorcontrib>Wang, Jiuhui</creatorcontrib><creatorcontrib>Zhou, Zixuan</creatorcontrib><creatorcontrib>Wang, Qiantao</creatorcontrib><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Santana, Efstathios</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guo</au><au>Wang, Jiuhui</au><au>Zhou, Zixuan</au><au>Wang, Qiantao</au><au>Wu, Qiong</au><au>Jiang, Xingyu</au><au>Santana, Efstathios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2018-09</date><risdate>2018</risdate><volume>80</volume><spage>360</spage><epage>370</epage><pages>360-370</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper introduces a new combined technique for wind turbine islanding detection using the trajectory of state variables and wavelet transform in microgrid system. The proposed relay is utilized of energy variation state of time-frequency transform coefficients of local signals in two-dimensional space. In order to improve of the proposed relay performance, a signal selection method based on the correlation concept between islanding and non-islanding signals. From of all patterns, the best of them with high correlation in islanding status is selected for the proposed relay learning. A neuro-fuzzy machine is used as learning of selected patterns to avoid threshold selection. The proposed technique is utilized to wind turbine islanding detection in a microgrid system contains various types of distributed generation including wind turbine, Combined Heat and Power (CHP) and photovoltaic system. Many islanding and non-islanding situation including motor starting, various load and capacitor switching in various operation conditions in the studied microgrid are simulated. Millstone characteristics of the proposed technique are included passive-based technique, negligible None Detection Zone (NDZ), suitable for microgrid application, performance increment in detection and fast detection time. Operation results of the proposed relay in various conditions confirm the performance of the proposed detection relay. •Negligible None detection Zone.•Avoiding of threshold selection.•Suitable for microgrid application.•Usable in noisy condition.•Best data selection method.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30033234</pmid><doi>10.1016/j.isatra.2018.07.017</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2018-09, Vol.80, p.360-370
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2074140391
source Elsevier ScienceDirect Journals
subjects Islanding detection
Neuro fuzzy
Pattern learning
Signal correlation
Wavelet energy
title State variable technique islanding detection using time-frequency energy analysis for DFIG wind turbine in microgrid system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20variable%20technique%20islanding%20detection%20using%20time-frequency%20energy%20analysis%20for%20DFIG%20wind%20turbine%20in%20microgrid%20system&rft.jtitle=ISA%20transactions&rft.au=Wang,%20Guo&rft.date=2018-09&rft.volume=80&rft.spage=360&rft.epage=370&rft.pages=360-370&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2018.07.017&rft_dat=%3Cproquest_cross%3E2074140391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2074140391&rft_id=info:pmid/30033234&rft_els_id=S0019057818302726&rfr_iscdi=true